Inflammatory bowel diseases (IBD) are systemic immune-mediated conditions with predilection for the gastrointestinal tract and include Crohn's disease and ulcerative colitis. Despite the advances in the fields of basic and applied research, the etiopathogenesis remains largely unknown. As a result, only one third of the patients achieve endoscopic remission.
View Article and Find Full Text PDFAim: The metabolic performance of the gut microbiota contributes to the onset of type 2 diabetes. However, targeted dietary interventions are limited by the highly variable inter-individual response. We hypothesized (1) that the composition of the complex gut microbiome and metabolome (MIME) differ across metabolic spectra (lean-obese-diabetes); (2) that specific MIME patterns could explain the differential responses to dietary inulin; and (3) that the response can be predicted based on baseline MIME signature and clinical characteristics.
View Article and Find Full Text PDFFecal microbiota transfer may serve as a therapeutic tool for treating obesity and related disorders but currently, there is no consensus regarding the optimal donor characteristics. We studied how microbiota from vegan donors, who exhibit a low incidence of non-communicable diseases, impact on metabolic effects of an obesogenic diet and the potential role of dietary inulin in mediating these effects. Ex-germ-free animals were colonized with human vegan microbiota and fed a standard or Western-type diet (WD) with or without inulin supplementation.
View Article and Find Full Text PDFPlant-based diets are associated with potential health benefits, but the contribution of gut microbiota remains to be clarified. We aimed to identify differences in key features of microbiome composition and function with relevance to metabolic health in individuals adhering to a vegan vs. omnivore diet.
View Article and Find Full Text PDFButyrate is formed in the gut during bacterial fermentation of dietary fiber and is attributed numerous beneficial effects on the host metabolism. We aimed to develop a method for the assessment of functional capacity of gut microbiota butyrate synthesis based on the qPCR quantification of bacterial gene coding butyryl-CoA:acetate CoA-transferase, the key enzyme of butyrate synthesis. In silico, we identified bacteria possessing gene among human gut microbiota by searching coding sequences in available databases.
View Article and Find Full Text PDF