Clean hydrogen production requires large-scale deployment of water-electrolysis technologies, particularly proton-exchange-membrane water electrolyzers (PEMWEs). However, as iridium-based electrocatalysts remain the only practical option for PEMWEs, their low abundance will become a bottleneck for a sustainable hydrogen economy. Herein, we propose high-performing and durable ionomer-free porous transport electrodes (PTEs) with facile recycling features enabling Ir thrifting and reclamation.
View Article and Find Full Text PDFInterfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra-low Ir loadings of ≈0.05 mg cm .
View Article and Find Full Text PDFUnderstanding the relationships between porous transport layer (PTL) morphology and oxygen removal is essential to improve the polymer electrolyte water electrolyzer (PEWE) performance. X-ray computed tomography and machine learning were performed on a model electrolyzer at different water flow rates and current densities to determine how these operating conditions alter oxygen transport in the PTLs. We report a direct observation of oxygen taking preferential pathways through the PTL, regardless of the water flow rate or current density (1-4 A/cm).
View Article and Find Full Text PDFWe present ultralow Ir-loaded (ULL) proton exchange membrane water electrolyzer (PEMWE) cells that can produce enough hydrogen to largely decarbonize the global natural gas, transportation, and electrical storage sectors by 2050, using only half of the annual global Ir production for PEMWE deployment. This represents a significant improvement in PEMWE's global potential, enabled by careful control of the anode catalyst layer (CL), including its mesostructure and catalyst dispersion. Using commercially relevant membranes (Nafion 117), cell materials, electrocatalysts, and fabrication techniques, we achieve at peak a 250× improvement in Ir mass activity over commercial PEMWEs.
View Article and Find Full Text PDFWe demonstrate the translation of a low-cost, non-precious metal cobalt phosphide (CoP) catalyst from 1 cm lab-scale experiments to a commercial-scale 86 cm polymer electrolyte membrane (PEM) electrolyser. A two-step bulk synthesis was adopted to produce CoP on a high-surface-area carbon support that was readily integrated into an industrial PEM electrolyser fabrication process. The performance of the CoP was compared head to head with a platinum-based PEM under the same operating conditions (400 psi, 50 °C).
View Article and Find Full Text PDF