All cereal crops engage in arbuscular mycorrhizal symbioses which can have profound, but sometimes deleterious, effects on plant nutrient acquisition and growth. The mechanisms underlying variable mycorrhizal responsiveness in cereals are not well characterised or understood. Adapting crops to realise mycorrhizal benefits could reduce fertiliser requirements and improve crop nutrition where fertiliser is unavailable.
View Article and Find Full Text PDFThe use of insecticides to control agricultural pests has resulted in resistance developing to most known insecticidal modes of action. Strategies by which resistance can be slowed are necessary to prolong the effectiveness of the remaining modes of action. Here we use a flexible mathematical model of resistance evolution to compare four insecticide application strategies: (i) applying one insecticide until failure, then switching to a second insecticide (sequential application), (ii) mixing two insecticides at their full label doses, (iii) rotating (alternating) two insecticides at full label dose, or (iv) mixing two insecticides at a reduced dose (with each mixture component at half the full label dose).
View Article and Find Full Text PDFCultivar resistance is an essential part of disease control programmes in many agricultural systems. The use of resistant cultivars applies a selection pressure on pathogen populations for the evolution of virulence, resulting in loss of disease control. Various techniques for the deployment of host resistance genes have been proposed to reduce the selection for virulence, but these are often difficult to apply in practice.
View Article and Find Full Text PDFBackground: Insensitivity of Zymoseptoria tritici to demethylation inhibitor (DMI) and quinone outside inhibitor (QoI) fungicides has been widely reported from laboratory studies, but the relationships between laboratory sensitivity phenotype or target site genotype and field efficacy remain uncertain. This article reports field experiments quantifying dose-response curves, and investigates the relationships between field performance and in vitro half maximal effective concentration (EC ) values for DMIs, and the frequency of the G143A substitution conferring QoI resistance.
Results: Data were analysed from 83 field experiments over 21 years.
Phytopathology
December 2017
Tolerance is defined as the ability of one cultivar to yield more than another cultivar under similar disease severity. If both cultivars suffer an equal loss in healthy (green) leaf area duration (HAD) over the grain filling period due to disease presence, then the yield loss per unit HAD loss is smaller for a more tolerant cultivar. Little is understood of what physiological and developmental traits of cultivars determine disease tolerance.
View Article and Find Full Text PDF