We evaluate global microplastics particle density distribution using field data from 1972 to 2022, made available by the NOAA (National Oceanic and Atmospheric Administration) NCEI (National Centers for Environmental Information) global marine microplastics database. We resampled the measured microplastics density data from NOAA NCEI into a regularly spaced 1° × 1° grid and applied ordinary block kriging on a 1° × 1° mask map of the global oceans to spatially interpolate the gridded data. Climate data were retrieved from the Climate Data Store of the Copernicus Climate Change Service.
View Article and Find Full Text PDFDaily rhythms in the rate and specificity of protein synthesis occur in most mammalian cells through an interaction between cell-autonomous circadian regulation and daily cycles of systemic cues. However, the overall protein content of a typical cell changes little over 24 h. For most proteins, translation appears to be coordinated with protein degradation, producing phases of proteomic renewal that maximize energy efficiency while broadly maintaining proteostasis across the solar cycle.
View Article and Find Full Text PDFThe study of aquatic animal movements is a rapidly growing field of research, with tracking methodology ever developing and refining. Acoustic telemetry is arguably the most popular method used to study the movements of fish. Despite this method being able to elucidate many aspects of movement behavior, including residency, home range, and migration, among others, one aspect that remains challenging is the study and definition of connectivity, particularly within marine seascapes.
View Article and Find Full Text PDFBackground: Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. While PD-1 based immunotherapies overall have led to improved treatment outcomes for this disease, a diverse response to frontline chemotherapy and immunotherapy still exist in TNBC, highlighting the need for more robust prognostic markers.
Methods: Tumor-intrinsic immunotranscriptomics, serum cytokine profiling, and tumor burden studies were conducted in two syngeneic mouse models to assess differential effects in both the early-stage and metastatic setting.
A spinal cord injury (SCI) disrupts the neuronal projections from the brain to the region of the spinal cord that produces walking, leading to various degrees of paralysis. Here, we aimed to identify brain regions that steer the recovery of walking after incomplete SCI and that could be targeted to augment this recovery. To uncover these regions, we constructed a space-time brain-wide atlas of transcriptionally active and spinal cord-projecting neurons underlying the recovery of walking after incomplete SCI.
View Article and Find Full Text PDF