A novel series of indazole/indole derivatives were discovered as glucagon receptor (GCGR) antagonists through scaffold hopping based on two literature leads: MK-0893 and LY-2409021. Further structure-activity relationship (SAR) exploration and optimization led to the discovery of multiple potent GCGR antagonists with excellent pharmacokinetic properties in mice and rats, including low systemic clearance, long elimination half-life, and good oral bioavailability. These potent GCGR antagonists could be used for potential treatment of type II diabetes.
View Article and Find Full Text PDFA new series of (2S,3R,4R,5S,6R)-5-fluoro-6-(hydroxymethyl)-2-aryltetrahydro-2H-pyran-3,4-diols as dual inhibitors of sodium glucose co-transporter proteins (SGLTs) were disclosed. Two methods were developed to efficiently synthesize C-fluoro-lactones 3 and 4, which are key intermediates to the C-fluoro-hexose based C-aryl glucosides. Compound 2b demonstrated potent hSGLT1 and hSGLT2 inhibition (IC = 43 nM for SGLT1 and IC = 9 nM for SGLT2).
View Article and Find Full Text PDFThe discovery of a novel series of N-arylpyrroles as agonists of GPR120 (FFAR4) is discussed. One lead compound is a potent GPR120 agonist, has good selectivity for related receptor GPR40 (FFAR1), has acceptable PK properties, and is active in 2 models of Type 2 Diabetes in mice.
View Article and Find Full Text PDFAlthough much speculation has surrounded intestinally expressed FcRn as a means for systemic uptake of orally administered immunoglobulin G (IgG), this has not been validated in translational models beyond neonates or in FcRn-expressing cells in vitro. Recently, IgG1 intestinal infusion acutely in anesthetized cynomolgus resulted in detectable serum monoclonal antibody (mAb) levels. In this study, we show that IgG2 has greater protease resistance to intestinal enzymes in vitro and mice in vivo, due to protease resistance in the hinge region.
View Article and Find Full Text PDF