Publications by authors named "N D E Greene"

Article Synopsis
  • The study examined cochlear implant array malpositioning, particularly focusing on a specific issue called tip fold-over, which can impair speech perception and cause other complications.
  • Researchers conducted experiments using cadaveric human heads to measure intracochlear pressure and observe the mechanics of tip fold-over events during the insertion of electrodes.
  • Three distinct types of tip fold-overs were identified, with significant pressure changes linked to electrode twisting; this recognition could improve surgical techniques and monitoring during cochlear implant procedures.
View Article and Find Full Text PDF

Currently, there are limited therapeutic options for patients with non-active secondary progressive multiple sclerosis. Therefore, real-world studies have investigated differences between patients with relapsing-remitting multiple sclerosis, non-active secondary progressive multiple sclerosis and active secondary progressive multiple sclerosis. Here, we explore patterns and predictors of transitioning between these phenotypes.

View Article and Find Full Text PDF

Modern quantitative image analysis techniques have enabled high-throughput, high-content imaging experiments. Image-based profiling leverages the rich information in images to identify similarities or differences among biological samples, rather than measuring a few features, as in high-content screening. Here, we review a decade of advancements and applications of Cell Painting, a microscopy-based cell-labeling assay aiming to capture a cell's state, introduced in 2013 to optimize and standardize image-based profiling.

View Article and Find Full Text PDF
Article Synopsis
  • The processes of primary and secondary neurulation, which lead to spinal cord formation, are not fully understood in humans due to difficulties accessing embryos at the relevant stages (3-7 weeks post-conception).
  • Analysis of 108 human embryos reveals that while primary neurulation is similar to that in mice, it has distinct differences; secondary neurulation begins later and forms a single lumen, unlike the multiple lumens seen in chicks.
  • Key differences in neurulation timing between humans and mice were noted, such as the rate of somite formation and the termination of axial elongation associated with apoptosis in the embryonic tailbud; these findings can aid current research on neurulation using stem cell-derived organoids
View Article and Find Full Text PDF