For operation as power amplifiers in RF applications, high electron mobility transistor (HEMT) structures are subjected to a range of bias conditions, applied at both the gate and drain terminals, as the device is biased from the OFF- to ON-state conditions. The stability of the device threshold voltage (V) condition is imperative from a circuit-design perspective and is the focus of this study, where stresses in both the ON and OFF states are explored. We see rapid positive threshold voltage increases under negative bias stress and subsequent recovery (i.
View Article and Find Full Text PDFNano-ridge engineering (NRE) is a novel method to monolithically integrate III-V devices on a 300 mm Si platform. In this work, NRE is applied to InGaP/GaAs heterojunction bipolar transistors (HBTs), enabling hybrid III-V/CMOS technology for RF applications. The NRE HBT stacks were grown by metal-organic vapor-phase epitaxy on 300 mm Si (001) wafers with a double trench-patterned oxide template, in an industrial deposition chamber.
View Article and Find Full Text PDFSemiconductor heterostructures are at the heart of most nanoelectronic and photonic devices such as advanced transistors, lasers, light emitting diodes, optical modulators and photo-detectors. However, the performance and reliability of the respective devices are often limited by the presence of crystalline defects which arise from plastic relaxation of misfit strain present in these heterogeneous systems. To date, characterizing the nature and distribution of such defects in 3D nanoscale devices precisely and non-destructively remains a critical metrology challenge.
View Article and Find Full Text PDFThe performance of heterogeneous 3D transistor structures critically depends on the composition and strain state of the buffer, channel and source/drain regions. In this paper we used an in-line high resolution x-ray diffraction (HRXRD) tool to study in detail the composition and strain in selectively grown SiGe/Ge fin structures with widths down to 20 nm. For this purpose we arranged fins of identical dimensions into larger arrays which were then analyzed using an x-ray beam several tens of micrometers in size.
View Article and Find Full Text PDFWe demonstrate a single-hole transistor using an individual acceptor dopant embedded in a silicon channel. Magneto-transport spectroscopy reveals that the ground state splits as a function of magnetic field into four states, which is unique for a single hole bound to an acceptor in a bulk semiconductor. The two lowest spin states are heavy (|m(j)| = 3/2) and light (|m(j)| = 1/2) hole-like, a two-level system that can be electrically driven and is characterized by a magnetic field dependent and long relaxation time, which are properties of interest for qubits.
View Article and Find Full Text PDF