Mater Sci Eng C Mater Biol Appl
February 2020
Hydroxyapatite (HA) coatings onto Ti6Al4V alloy substrates were obtained by several thermal spray technologies: atmospheric plasma spray (APS) and high velocity oxy fuel (HVOF), together with the cold spray (CS) technique. A characterization study has been performed by means of surface and microstructure analyses, as well as biological performance. In-vitro tests were performed with primary human osteoblasts at 1, 7 and 14 days of cell culture on substrates.
View Article and Find Full Text PDFA highly rough titanium coating obtained by Cold Gas Spray (CGS) has been characterized by means of high-resolution 3D microtomography (micro-CT) with the aim to evaluate its open and close porosity for possible use in orthopaedic implants to promote osseointegration. Micro-CT allowed a qualitative and quantitative description of the main features, morphology of the pores and surface roughness of the coating. Several numerical values were obtained to describe size, form and distribution of the closed/inner and open/outer pores.
View Article and Find Full Text PDFThe lack of bioactivity of titanium (Ti) is one of the main drawbacks for its application in biomedical implants since it can considerable reduce its osseointegration capacities. One strategy to overcome this limitation is the coating of Ti with hydroxyapatite (HA), which presents similar chemical composition than bone. Nonetheless, most of the strategies currently used generate a non-stable coating and may produce the formation of amorphous phases when high temperatures are used.
View Article and Find Full Text PDFHierarchical structures were obtained applying two different nanotexturing surface treatments onto highly rough commercial pure titanium coatings by cold spray: (i) anodic oxidation and (ii) alkaline treatments. An extended surface characterization in terms of topography, composition, and wettability has been performed to understand how those parameters affect to cell response. Primary human osteoblasts extracted from knee were seeded onto the as-sprayed titanium surface before and after the nanotexturing treatments.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
June 2018
Three different surface treatments on a Ti6Al4V alloy have been in vitro tested for possible application in cementless joint prosthesis. All of them involve the novelty of using the Cold Spray technology for their deposition: (i) an as-sprayed highly rough titanium and, followed by the deposition of a thin hydroxyapatite layer with (ii) microcrystalline or (iii) nanocrystalline structure. Primary human osteoblasts were extracted from knee and seeded onto the three different surfaces.
View Article and Find Full Text PDF