The urban community faces a significant obstacle in effectively utilising Earth Observation (EO) intelligence, particularly the Copernicus EO program of the European Union, to address the multifaceted aspects of urban sustainability and bolster urban resilience in the face of climate change challenges. In this context, here we present the efforts of the CURE project, which received funding under the European Union's Horizon 2020 Research and Innovation Framework Programme, to leverage the Copernicus Core Services (CCS) in supporting urban resilience. CURE provides spatially disaggregated environmental intelligence at a local scale, demonstrating that CCS can facilitate urban planning and management strategies to improve the resilience of cities.
View Article and Find Full Text PDFGeophys Res Lett
February 2022
Water storage plays an important role in mitigating heat and flooding in urban areas. Assessment of the water storage capacity of cities remains challenging due to the inherent heterogeneity of the urban surface. Traditionally, effective storage has been estimated from runoff.
View Article and Find Full Text PDFThe measures taken to contain the spread of COVID-19 in 2020 included restrictions of people's mobility and reductions in economic activities. These drastic changes in daily life, enforced through national lockdowns, led to abrupt reductions of anthropogenic CO emissions in urbanized areas all over the world. To examine the effect of social restrictions on local emissions of CO, we analysed district level CO fluxes measured by the eddy-covariance technique from 13 stations in 11 European cities.
View Article and Find Full Text PDFFor many years, Protected Areas (PA) have been an important tool for conserving nature. Recently, also societal aspects have been introduced into PA management via the introduction of the Ecosystem Services (ES) approach. This review discusses the historical background of PAs, PA management, and the ES approach.
View Article and Find Full Text PDFAir quality monitoring across Europe is mainly based on in situ ground stations, which are too sparse to accurately assess the exposure effects of air pollution for the entire continent. The demand for precise predictive models that estimate gridded geophysical parameters of ambient air at high spatial resolution has rapidly grown. Here, we investigate the potential of satellite-derived products to improve particulate matter (PM) estimates.
View Article and Find Full Text PDF