Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10(-17) via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer.
View Article and Find Full Text PDFWe report a cascaded optical link of 1100 km for ultra-stable frequency distribution over an Internet fiber network. The link is composed of four spans for which the propagation noise is actively compensated. The robustness and the performance of the link are ensured by five fully automated optoelectronic stations, two of them at the link ends, and three deployed on the field and connecting the spans.
View Article and Find Full Text PDFWe present the results of measurement and evaluation of spectral properties of iodine absorption cells filled at certain saturation pressure. A set of cells made of borosilicate glass instead of common fused silica was tested for their spectral properties in greater detail with special care for the long-term development of the absorption media purity. The results were compared with standard fused silica cells and the high quality of iodine was verified.
View Article and Find Full Text PDFWe report on phase locking of two continuous wave IR laser sources separated by 100 THz emitting around 1029 and 1544 nm, respectively. Our approach uses three independent harmonic generation processes of the IR laser frequencies in periodically poled MgO:LiNbO3 crystals to generate second and third harmonics of those two IR sources. The beat note between the two independent green radiations generated around 515 nm is used to phase lock one IR laser to the other, with tunable radio frequency offset.
View Article and Find Full Text PDFWe present the experimental realization of a laser system for ground-to-satellite optical Doppler ranging at the atmospheric turbulence limit. Such a system needs to display good frequency stability (a few parts in 10) while allowing large and well-controlled frequency sweeps of ±12 GHz at rates exceeding 100 MHz/s. Furthermore it needs to be sufficiently compact and robust for transportation to different astronomical observation sites, where it is to be interfaced with satellite ranging telescopes.
View Article and Find Full Text PDF