Bromine in ice cores has been proposed as a qualitative sea ice proxy to produce sea ice reconstructions for the polar regions. Here we report the first statistical validation of this proxy with satellite sea ice observations by combining bromine enrichment (with respect to seawater, Br) records from three Greenlandic ice cores (SIGMA-A, NU and RECAP) with satellite sea ice imagery, over three decades. We find that during the 1984-2016 satellite-era, ice core Br values are significantly correlated with first-year sea ice formed in the Baffin Bay and Labrador Sea supporting that the gas-phase bromine enrichment processes, preferentially occurring over the sea ice surface, are the main driver for the Br signal in ice cores.
View Article and Find Full Text PDFEstimating fire emissions prior to the satellite era is challenging because observations are limited, leading to large uncertainties in the calculated aerosol climate forcing following the preindustrial era. This challenge further limits the ability of climate models to accurately project future climate change. Here, we reconstruct a gridded dataset of global biomass burning emissions from 1750 to 2010 using inverse analysis that leveraged a global array of 31 ice core records of black carbon deposition fluxes, two different historical emission inventories as a priori estimates, and emission-deposition sensitivities simulated by the atmospheric chemical transport model GEOS-Chem.
View Article and Find Full Text PDFBlack carbon (BC), pyrogenic residues resulting from the incomplete combustion of organics, are liberated from wildfires at high rates. Subsequent introduction to aqueous environments via atmospheric deposition or overland flow results in the formation of a dissolved fraction, called dissolved black carbon (DBC). As wildfire frequency and intensity increases along with a changing climate, it becomes imperative to understand the impact a concurrent increase in DBC load might have to aquatic ecosystems.
View Article and Find Full Text PDFMilitary conflicts result in local environmental damage, but documenting regional and larger scale impacts such as heavy metal pollution has proven elusive. Anthropogenic emissions of bismuth (Bi) include coal burning and various commodity productions but no emission estimates over the past century exist. Here we used Bi measurements in ice cores from the French Alps to show evidence of regional-scale Bi pollution concurrent with the Spanish Civil War and World War II.
View Article and Find Full Text PDF