Background: Cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the final steps in the biosynthesis of monolignols, the monomeric units of the phenolic lignin polymers which confer rigidity, imperviousness and resistance to biodegradation to cell walls. We have previously shown that the Eucalyptus gunnii CCR and CAD2 promoters direct similar expression patterns in vascular tissues suggesting that monolignol production is controlled, at least in part, by the coordinated transcriptional regulation of these two genes. Although consensus motifs for MYB transcription factors occur in most gene promoters of the whole phenylpropanoid pathway, functional evidence for their contribution to promoter activity has only been demonstrated for a few of them.
View Article and Find Full Text PDFSummary EgMYB2, a member of a new subgroup of the R2R3 MYB family of transcription factors, was cloned from a library consisting of RNA from differentiating Eucalyptus xylem. EgMYB2 maps to a unique locus on the Eucalyptus grandis linkage map and co-localizes with a quantitative trait locus (QTL) for lignin content. Recombinant EgMYB2 protein was able to bind specifically the cis-regulatory regions of the promoters of two lignin biosynthetic genes, cinnamoyl-coenzyme A reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD), which contain MYB consensus binding sites.
View Article and Find Full Text PDFIntron-bearing replacement histone H3 genes in Arabidopsis and other plants are highly and constitutively expressed. We demonstrate that the introns located within the 5'-untranslated regions (5'-UTR) of the two Arabidopsis replacement H3 genes will abolish the cell cycle dependence of an endogenous histone H4 promoter. We demonstrate that these introns, functionally combined with their endogenous promoters, could produce the high and constitutive expression of the replacement H3 genes observed in planta.
View Article and Find Full Text PDFAlthough the basic mechanisms which control the progression through the cell cycle appear to be conserved in all higher eukaryotes, the unique features of the plant developmental programme must be somehow reflected in a plant-specific regulation of the factors which control cell division. In the past few years, considerable progress has been achieved in identifying the major components of the cell cycle machinery in plants, especially the cyclin-dependent kinases (CDKs) and their regulatory subunits, the cyclins. The question of how these components direct expression of specific genes at specific stages of the cell cycle, and how they are themselves regulated, constitutes a challenge for the present and for the years to come.
View Article and Find Full Text PDFRibonucleotide reductase (RNR) is a key enzyme involved in the DNA synthesis pathway. The RNR-encoded genes are cell cycle regulated and specifically expressed in S phase. The promoter of the RNR2 gene encoding for the small subunit was isolated from tobacco.
View Article and Find Full Text PDF