We developed Del-read, an algorithm targeting medium-sized deletions (6-100 bp) in short-reads, which are challenging for current variant callers relying on alignment. Our focus was on Micro-Homolog mediated End Joining deletions (MMEJ-dels), prevalent in myeloid malignancies. MMEJ-dels follow a distinct pattern, occurring between two homologies, allowing us to generate a comprehensive list of MMEJ-dels in the exome.
View Article and Find Full Text PDFSpliceosome machinery mutations are common early mutations in myeloid malignancies; however, effective targeted therapies against them are still lacking. In the current study, we used an high-throughput drug screen among four different isogenic cell lines and identified RKI-1447, a Rho-associated protein kinase inhibitor, as selective cytotoxic effector of mutant cells. RKI-1447 targeted mutated primary human samples in xenografts models.
View Article and Find Full Text PDFBoth fatty bone marrow (FBM) and somatic mutations in hematopoietic stem cells (HSCs), also termed clonal hematopoiesis (CH) accumulate with human aging. However it remains unclear whether FBM can modify the evolution of CH. To address this question, we herein present the interaction between CH and FBM in two preclinical male mouse models: after sub-lethal irradiation or after castration.
View Article and Find Full Text PDFDonor clonal hematopoiesis may be transferred to the recipient through allogeneic hematopoietic stem cell transplantation (HSCT), but the potential for adverse long-term impact on transplant outcomes remains unknown. A total of 744 samples from 372 recipients who received HSCT and the corresponding donors were included. Bar-coded error-corrected sequencing using a modified molecular inversion probe capture protocol was performed, which targeted 33 genes covering mutations involved in clonal hematopoiesis with indeterminate potential (CHIP) and other acute myeloid leukemia-related mutations.
View Article and Find Full Text PDFDeep targeted sequencing technologies are still not widely used in clinical practice due to the complexity of the methods and their cost. The Molecular Inversion Probes (MIP) technology is cost effective and scalable in the number of targets, however, suffers from low overall performance especially in GC rich regions. In order to improve the MIP performance, we sequenced a large cohort of healthy individuals ( = 4417), with a panel of 616 MIPs, at high depth in duplicates.
View Article and Find Full Text PDF