Publications by authors named "N Chandra Mohana"

Background: Gastrointestinal tract (GIT) diseases impact the entire digestive system, spanning from the mouth to the anus. Wireless Capsule Endoscopy (WCE) stands out as an effective analytic instrument for Gastrointestinal tract diseases. Nevertheless, accurately identifying various lesion features, such as irregular sizes, shapes, colors, and textures, remains challenging in this field.

View Article and Find Full Text PDF

Domination is an important factor in determining the robustness of a graph structure. A thorough examination of the graph's topological structure is necessary for analyzing and examining it for various aspects. Understanding the stability of a chemical compound is a significant criterion in chemistry, which necessitates conducting numerous experimental tests.

View Article and Find Full Text PDF

Background: Endophyte bestows beneficial aspects to its inhabiting host, along with a contribution to diverse structural attributes with biological potential. In this regard, antimicrobial profiling of fungal endophytes from medicinal plant Adiantum philippense revealed bioactive Nigrospora sphaerica from the leaf segment. Chemical and biological profiling through TLC-bioautography and hyphenated spectroscopic techniques confirmed the presence of phomalactone as an antimicrobial metabolite.

View Article and Find Full Text PDF

The agar overlay TLC-bioautography is one of the crucial methods for simultaneous in situ detection and separation of antimicrobial metabolites of pharmaceutical interest. The main focus of this research relies on the dereplication of an antimicrobial metabolite coriloxin derived from mycoendophytic Xylaria sp. NBRTSB-20 with a validation of agar overlay TLC-bioautography technique.

View Article and Find Full Text PDF

An implantation study of cerium oxide nanoparticles (CeO2-NP) combined with 28-day systemic toxicity and genotoxicity studies aligned to current regulatory standards was conducted. The results suggested that local tissue reactions caused by CeO2-NP was minimal (implantation irritation index of less than 3) and was better tolerated than most other implant materials tested in our laboratory. Furthermore, CeO2-NP showed virtually no systemic toxicity or micronucleus induction in bone marrow implantation route.

View Article and Find Full Text PDF