Endothelial cell physiology is governed by its unique microenvironment at the interface between blood and tissue. A major contributor to the endothelial biophysical environment is blood hydrostatic pressure, which in mechanical terms applies isotropic compressive stress on the cells. While other mechanical factors, such as shear stress and circumferential stretch, have been extensively studied, little is known about the role of hydrostatic pressure in the regulation of endothelial cell behavior.
View Article and Find Full Text PDFEndothelial cells are constantly exposed to mechanical stimuli, of which mechanical stretch has shown various beneficial or deleterious effects depending on whether loads are within physiological or pathological levels, respectively. Vascular properties change with age, and on a cell-scale, senescence elicits changes in endothelial cell mechanical properties that together can impair its response to stretch. Here, high-rate uniaxial stretch experiments were performed to quantify and compare the stretch-induced damage of monolayers consisting of young, senescent, and aged endothelial populations.
View Article and Find Full Text PDFIntegr Biol (Camb)
January 2024
Mechanical forces are of major importance in regulating vascular homeostasis by influencing endothelial cell behavior and functions. Adherens junctions are critical sites for mechanotransduction in endothelial cells. β-catenin, a component of adherens junctions and the canonical Wnt signaling pathway, plays a role in mechanoactivation.
View Article and Find Full Text PDF: A self-constructed valved pulmonary conduit made out of a de-cellularized porcine small intestinal submucosal extracellular matrix biological scaffold was tested in a chronic growing lamb model. : The conduit was implanted in pulmonary valve position in 19 lambs. We monitored clinical, laboratory, and echocardiographic findings until 12 months after surgery.
View Article and Find Full Text PDFBackground: In vitro assessment is mandatory for artificial heart valve development. This study aims to investigate the effects of pulse duplicator features on valve responsiveness, conduct a sensitivity analysis across valve prosthesis types, and contribute on the development of versatile pulse duplicator systems able to perform reliable prosthetic aortic valve assessment under physiologic hemodynamic conditions.
Methods: A reference pulse duplicator was established based on literature.