Publications by authors named "N Cazier"

Subnanometer displacement detection lays the solid foundation for critical applications in modern metrology. In-plane displacement sensing, however, is mainly dominated by the detection of differential photocurrent signals from photodiodes, with resolution in the nanometer range. Here, we present an integrated nanoelectromechanical in-plane displacement sensor based on a nanoelectromechanical trampoline resonator.

View Article and Find Full Text PDF

In this paper, we present a shutter-based electro-optical modulator made of two parallel nanoelectromechanical silicon nitride string resonators. These strings are covered with electrically connected gold electrodes and actuated either by Lorentz or electrostatic forces. The in-plane string vibrations modulate the width of the gap between the strings.

View Article and Find Full Text PDF

Electrically controlled optical metal antennas are an emerging class of nanodevices enabling a bilateral transduction between electrons and photons. At the heart of the device is a tunnel junction that may either emit light upon injection of electrons or generate an electrical current when excited by a light wave. The current study explores a technological route for producing these functional units based upon the electromigration of metal constrictions.

View Article and Find Full Text PDF

Initiated as a cable-replacement solution, short-range wireless power transfer has rapidly become ubiquitous in the development of modern high-data throughput networking in centimeter to meter accessibility range. Wireless technology is now penetrating a higher level of system integration for chip-to-chip and on-chip radiofrequency interconnects. However, standard CMOS integrated millimeter-wave antennas have typical size commensurable with the operating wavelength, and are thus an unrealistic solution for downsizing transmitters and receivers to the micrometer and nanometer scale.

View Article and Find Full Text PDF

We introduce a new type of electroplasmonic interfacing component to electrically generate surface plasmons. Specifically, an electron-fed optical tunneling gap antenna is integrated on a plasmonic waveguiding platform. When electrical charges are injected in the tunneling barrier of the gap antenna, a broad-band radiation is emitted from the feed area by a process identified as a thermal emission of hot electrons.

View Article and Find Full Text PDF