Publications by authors named "N Carlesso"

We report on the antileukemic activity of homoharringtonine (HHT) in T-cell acute lymphoblastic leukemia (T-ALL). We showed that HHT inhibited the NOTCH/MYC pathway and induced significantly longer survival in mouse and patient-derived T-ALL xenograft models, supporting HHT as a promising agent for T-ALL.

View Article and Find Full Text PDF
Article Synopsis
  • Dynamic DNA sequences, particularly in the RACK7 gene, are linked to replication stress and mutations, potentially serving as biomarkers for prostate cancer due to their ability to form i-motif structures under certain conditions.
  • Research involved cloning and sequencing the RACK7 region from various individuals, showing deletions in both older normal adults and cancer patients, suggesting a correlation with age rather than a direct link to cancer.
  • The study concludes that the frequency of mutations in dynamic sequences may reflect biological age and lifespan rather than solely indicating cancer, highlighting the need for further research in this area.
View Article and Find Full Text PDF

Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS.

View Article and Find Full Text PDF

Heterogeneity of endothelial cell (EC) populations reflects their diverse functions in maintaining tissue's homeostasis. However, their phenotypic, molecular, and functional properties are not entirely mapped. We use the Tie2-CreERT2;Rosa26-tdTomato reporter mouse to trace, profile, and cultivate primary ECs from different organs.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) have been shown to hold prognostic value in acute myeloid leukemia (AML); however, the temporal dynamics of miRNA expression in AML are poorly understood. Using serial samples from a mouse model of AML to generate time-series miRNA sequencing data, we are the first to show that the miRNA transcriptome undergoes state-transition during AML initiation and progression. We modeled AML state-transition as a particle undergoing Brownian motion in a quasi-potential and validated the AML state-space and state-transition model to accurately predict time to AML in an independent cohort of mice.

View Article and Find Full Text PDF