Publications by authors named "N C S Mykytczuk"

Conservation breeding programmes include translocations of animals across breeding facilities, both and , and to/from their natural habitat. Newly reintroduced Vancouver Island marmots (VIMs) originating from the captive breeding programme are known to experience high winter mortality once reintroduced. Whilst high winter mortality rates amongst reintroduced VIM populations remain a concern of unknown causes, this health issue could potentially be linked to changes in gut microbiota prior to hibernation.

View Article and Find Full Text PDF

Mine wastewater often contains dissolved metals at concentrations too low to be economically extracted by existing technologies, yet too high for environmental discharge. The most common treatment is chemical precipitation of the dissolved metals using limestone and subsequent disposal of the sludge in tailing impoundments. While it is a cost-effective solution to meet regulatory standards, it represents a lost opportunity.

View Article and Find Full Text PDF

Low temperature and acidic environments encompass natural milieus such as acid rock drainage in Antarctica and anthropogenic sites including drained sulfidic sediments in Scandinavia. The microorganisms inhabiting these environments include polyextremophiles that are both extreme acidophiles (defined as having an optimum growth pH < 3), and eurypsychrophiles that grow at low temperatures down to approximately 4°C but have an optimum temperature for growth above 15°C. Eurypsychrophilic acidophiles have important roles in natural biogeochemical cycling on earth and potentially on other planetary bodies and moons along with biotechnological applications in, for instance, low-temperature metal dissolution from metal sulfides.

View Article and Find Full Text PDF

Mine tailings are prevalent worldwide and can adversely impact adjacent ecosystems, including wetlands. This study investigated the impact of gold (Au) mine tailings contamination on peatland soil and pore water geochemistry, vegetation and microbial communities, and microbial carbon (C) cycling. Maximum arsenic (As) concentrations in peat and pore water reached 20,137 mg kg and 16,730 μg L, respectively, but decreased by two orders of magnitude along a 128 m gradient extending from the tailings into the wetland.

View Article and Find Full Text PDF
Article Synopsis
  • Peatlands play a crucial role in global carbon and nitrogen cycles, holding 15 to 30% of the world's soil carbon stock, but their varying chemistry complicates global carbon inventories.
  • A study analyzed 436 peat cores from 24 countries, finding significant differences in carbon, nitrogen, and organic matter content between different peatland categories, mainly influenced by pH levels.
  • The results indicate predictable differences in carbon and organic matter concentrations across peatland types, which can help enhance future assessments of global peatland carbon and nitrogen stocks.
View Article and Find Full Text PDF