Publications by authors named "N C Plumb"

The surface of three-dimensional materials provides an ideal and versatile platform to explore quantum-confined physics. Here, we systematically investigate the electronic structure of Na-intercalated CrTe, a van der Waals antiferromagnet, using angle-resolved photoemission spectroscopy and calculations. The measured band structure deviates from the calculation of bulk NaCrTe but agrees with that of ferromagnetic monolayer CrTe.

View Article and Find Full Text PDF

Charge density wave (CDW) orders in vanadium-based kagome metals have recently received tremendous attention, yet their origin remains a topic of debate. The discovery of ScVSn, a bilayer kagome metal featuring an intriguing [Formula: see text] CDW order, offers a novel platform to explore the underlying mechanism behind the unconventional CDW. Here, we combine high-resolution angle-resolved photoemission spectroscopy, Raman scattering and density functional theory to investigate the electronic structure and phonon modes of ScVSn.

View Article and Find Full Text PDF

We study the temperature evolution of quasiparticles in the correlated metal Sr_{2}RuO_{4}. Our angle resolved photoemission data show that quasiparticles persist up to temperatures above 200 K, far beyond the Fermi liquid regime. Extracting the quasiparticle self-energy, we demonstrate that the quasiparticle residue Z increases with increasing temperature.

View Article and Find Full Text PDF

Weyl semimetal is a unique topological phase with topologically protected band crossings in the bulk and robust surface states called Fermi arcs. Weyl nodes always appear in pairs with opposite chiralities, and they need to have either time-reversal or inversion symmetry broken. When the time-reversal symmetry is broken the minimum number of Weyl points (WPs) is two.

View Article and Find Full Text PDF