Publications by authors named "N C Little"

The yellow mealworm, Tenebrio molitor, L., can be an important component of the circular economy because of its ability to transform a variety of agricultural wastes and byproducts into valuable livestock feed. Analysis of their ability to endure toxins coupled with their potential to transfer contaminants to higher trophic levels is not complete.

View Article and Find Full Text PDF

The tarnished plant bug, (TPB) Lygus lineolaris Palisot de Beauvois (Hemiptera: Miridae) is a key pest of cotton in the midsouth region and some areas of the eastern United States. Its control methods have been solely based on chemical insecticides which has contributed to insecticidal resistance and shortened residual periods for control of this insect pest. This study was conducted over a two-year period and examined the efficacy and residual effect of four commercial insecticides including lambda-cyhalothrin (pyrethroid), acephate (organophosphate), imidacloprid (neonicotinoid), and sulfoxaflor (sulfoxamine).

View Article and Find Full Text PDF

Improving health and safety in our communities requires deliberate focus and commitment to equity. Inequities are differences in access, treatment, and outcomes between individuals and across populations that are systemic, avoidable, and unjust. Within health care in general, and Emergency Medical Services (EMS) in particular, there are demonstrated inequities in the quality of care provided to patients based on a number of characteristics linked to discrimination, exclusion, or bias.

View Article and Find Full Text PDF

Insecticidal Bacillus thuringiensis Berliner (Bt) toxins produced by transgenic cotton (Gossypium hirsutum L.) plants have become an essential component of cotton pest management. Bt toxins are the primary management tool in transgenic cotton for lepidopteran pests, the most important of which is the bollworm (Helicoverpa zea Boddie) (Lepidoptera: Noctuidae) in the United States (U.

View Article and Find Full Text PDF
Article Synopsis
  • Fuchs endothelial corneal dystrophy (FECD) is a disease that affects the cornea, causing vision problems due to changes in special cells called corneal endothelial cells.
  • A gene mutation related to a protein called TCF4 is linked to this condition, and it may affect how these cells move and heal.
  • The study found that boosting a specific version of the TCF4 protein can help these cells move faster, which could be important for finding new treatments for FECD.
View Article and Find Full Text PDF