Publications by authors named "N C Kupina"

Previous studies indicated there is an overall increase of proteolysis in aging rat brains. We monitored the potential degradation of cytoskeletal proteins in neuronal tissue taken from cerebral cortex and cerebellum of young (3 month) and aging (17, 21 and 23.5 month) Wistar rats.

View Article and Find Full Text PDF

The role of reactive oxygen-induced oxidative damage to lipids (i.e., lipid peroxidation, LP) and proteins has been strongly supported in previous work.

View Article and Find Full Text PDF

The resulting neuropathological degeneration that occurs following a traumatic brain injury (TBI) is a consequence of both immediate and secondary neurochemical sequelae. Proteolysis of cytoskeletal proteins, triggered by calcium-mediated events, is believed to be a particularly significant contributor to TBI-induced neuronal death. To date, efforts to associate cytoskeletal degradation and neurodegeneration in TBI have been primarily qualitative or semiquantitative.

View Article and Find Full Text PDF

The authors present two studies that investigate the biochemical and histologic effects of the nonimmunosuppressive neuroimmunophilin (NIMM) ligand V-10,367 in a mouse model of traumatic brain injury (TBI). In study 1, the authors examined the effect of V-10,367 (50 mg/kg x 2 per day, by mouth) on neurofilament M (NFM) protein levels and on alpha-spectrin breakdown products (SBDPs) when dosed for 2 days, starting 24 hours after TBI and killed on day 3. In study 2, V-10,367 was given for 10 days, starting 24 hours after TBI and the mice killed 6 weeks after TBI, to measure the extent of neurodegeneration (amino CuAg stain).

View Article and Find Full Text PDF

A principal mechanism of calcium-mediated neuronal injury is the activation of neutral proteases known as calpains. Proteolytic substrates for calpain include receptor and cytoskeletal proteins, signal transduction enzymes and transcription factors. Recently, calpain inhibitors have been shown to provide benefit in rat models of focal head injury and focal cerebral ischemia.

View Article and Find Full Text PDF