Publications by authors named "N Buschmann"

Cholesterol is essential for the stability and architecture of the plasma membrane and a precursor of bile acids and steroid hormones in mammals. Excess dietary cholesterol uptake leads to hypercholesterolemia and atherosclerosis and plays a role in cancer development. The role of actin-binding scaffolding protein LIM and SH3 protein 1 (LASP1) in cholesterol trafficking has not been investigated previously.

View Article and Find Full Text PDF
Article Synopsis
  • The YAP/Hippo pathway regulates organ growth and helps maintain stem cell function, with LATS kinases playing a critical role by inactivating YAP.
  • A new small-molecule inhibitor, NIBR-LTSi, has been developed that selectively targets LATS kinases, activating YAP signaling and promoting tissue regeneration in laboratory settings.
  • While NIBR-LTSi shows promise by enhancing liver regeneration and supporting stem cell characteristics, prolonged use may lead to excessive cell proliferation and dedifferentiation, which could limit its therapeutic benefits.
View Article and Find Full Text PDF

MALT1 plays a central role in immune cell activation by transducing NF-κB signaling, and its proteolytic activity represents a key node for therapeutic intervention. Two cycles of scaffold morphing of a high-throughput biochemical screening hit resulted in the discovery of MLT-231, which enabled the successful pharmacological validation of MALT1 allosteric inhibition in preclinical models of humoral immune responses and B-cell lymphomas. Herein, we report the structural activity relationships (SARs) and analysis of the physicochemical properties of a pyrazolopyrimidine-derived compound series.

View Article and Find Full Text PDF

FGF19 signaling through the FGFR4/β-klotho receptor complex has been shown to be a key driver of growth and survival in a subset of hepatocellular carcinomas, making selective FGFR4 inhibition an attractive treatment opportunity. A kinome-wide sequence alignment highlighted a poorly conserved cysteine residue within the FGFR4 ATP-binding site at position 552, two positions beyond the gate-keeper residue. Several strategies for targeting this cysteine to identify FGFR4 selective inhibitor starting points are summarized which made use of both rational and unbiased screening approaches.

View Article and Find Full Text PDF