Publications by authors named "N Bretz"

Organisms are commonly infected by a diverse array of pathogens and mount functionally distinct responses to each of these varied immune challenges. Host immune responses are characterized by the induction of gene expression, however, the extent to which expression changes are shared among responses to distinct pathogens is largely unknown. To examine this, we performed meta-analysis of gene expression data collected from following infection with a wide array of pathogens.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (aaRSs) are ancient enzymes that play a fundamental role in protein synthesis. They catalyze the esterification of specific amino acids to the 3'-end of their cognate tRNAs and therefore play a pivotal role in protein synthesis. Although previous studies suggest that aaRS-dependent errors in protein synthesis can be beneficial to some microbial species, evidence that reduced aaRS fidelity can be adaptive is limited.

View Article and Find Full Text PDF

A cell's surface molecular signature enables its reciprocal interactions with the associated microenvironments in development, tissue homeostasis and pathological processes. The CD24 surface antigen (heat-stable antigen, nectadrin; small cell lung cancer antigen cluster-4) represents a prime example of a neural surface molecule that has long been known, but whose diverse molecular functions in intercellular communication we have only begun to unravel. Here, we briefly summarize the molecular fundamentals of CD24 structure and provide a comprehensive review of CD24 expression and functional studies in mammalian neural developmental systems and disease models (rodent, human).

View Article and Find Full Text PDF

Background: Breast cancer is a heterogeneous disease displaying distinct molecular features and clinical outcome. The molecular profile of triple-negative breast cancers (TNBCs) overlaps with that of basal-like breast cancers that in turn show similarities with high-grade serous ovarian and endometrial carcinoma. L1CAM is an established biomarker for the latter cancers and we showed before that approximately 18% of primary breast cancers are positive for L1CAM and have a bad prognosis.

View Article and Find Full Text PDF

L1 cell adhesion molecule (L1CAM) is overexpressed in many human cancers, confers bad prognosis and augments cell motility, invasion and metastasis. Results from xenograft mouse models suggested that L1CAM antibodies might be promising tools for cancer therapy. Here, we generated human L1CAM-transgenic mice to study therapeutic efficacy and putative side effects in a model system.

View Article and Find Full Text PDF