Background And Purpose: Rare but severe toxicities of the optic apparatus have been observed after treatment of intracranial tumours with proton therapy. Some adverse events have occurred at unusually low dose levels and are thus difficult to understand considering dose metrics only. When transitioning from double scattering to pencil beam scanning, little consideration was given to increased dose rates observed with the latter delivery paradigm.
View Article and Find Full Text PDFAnatomical and daily set-up uncertainties impede high precision delivery of proton therapy. With online adaptation, the daily plan is reoptimized on an image taken shortly before the treatment, reducing these uncertainties and, hence, allowing a more accurate delivery. This reoptimization requires target and organs-at-risk (OAR) contours on the daily image, which need to be delineated automatically since manual contouring is too slow.
View Article and Find Full Text PDFObjectives: The purpose of this study is to report the oncological outcome, observed toxicities and normal tissue complication probability (NTCP) calculation for pencil beam scanning (PBS) PT delivered to salivary gland tumour (SGT) patients.
Methods: We retrospectively reviewed 26 SGT patients treated with PBSPT (median dose, 67.5 Gy(RBE)) between 2005 and 2020 at our institute.
Background And Purpose: To investigate the impact of organ motion on hypoxia-guided proton therapy treatments for non-small cell lung cancer (NSCLC) patients.
Materials And Methods: Hypoxia PET and 4D imaging data of six NSCLC patients were used to simulate hypoxia-guided proton therapy with different motion mitigation strategies including rescanning, breath-hold, respiratory gating and tumour tracking. Motion-induced dose degradation was estimated for treatment plans with dose painting of hypoxic tumour sub-volumes at escalated dose levels.