Publications by authors named "N Bielopolski"

Objective: Opening of voltage-gated sodium channels is crucial for neuronal depolarization. Proper channel opening and influx of Na through the ion pore, is dependent upon binding of Na ion to a specific amino-acid motif (DEKA) within the pore. In this study we used molecular dynamic simulations, an advanced bioinformatic tool, to research the dysfunction caused by pathogenic variants in SCN1a, SCN2a and SCN8a genes.

View Article and Find Full Text PDF

Olfactory associative learning in is mediated by synaptic plasticity between the Kenyon cells of the mushroom body and their output neurons. Both Kenyon cells and their inputs from projection neurons are cholinergic, yet little is known about the physiological function of muscarinic acetylcholine receptors in learning in adult flies. Here, we show that aversive olfactory learning in adult flies requires type A muscarinic acetylcholine receptors (mAChR-A), particularly in the gamma subtype of Kenyon cells.

View Article and Find Full Text PDF

Neuronal exocytosis depends on efficient formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes and is regulated by tomosyn, a SNARE-binding protein. To gain new information about tomosyn's activity, we characterized its mobility and organization on the plasma membrane (PM) in relation to other SNARE proteins and inhibition of exocytosis. By using direct stochastic optical reconstruction microscopy (dSTORM), we found tomosyn to be organized in small clusters adjacent to syntaxin clusters.

View Article and Find Full Text PDF

Tomosyn is a 130-kDa cytosolic R-SNARE protein that associates with Q-SNAREs and reduces exocytotic activity. Two paralogous genes, tomosyn-1 and -2, occur in mammals and produce seven different isoforms via alternative splicing. Here, we map the structural differences between the yeast homologue of m-tomosyn-1, Sro7, and tomosyn genes/isoforms to identify domains critical to the regulation of exocytotic activity to tomosyn that are outside the soluble N-ethylmaleimide-sensitive attachment receptor motif.

View Article and Find Full Text PDF