Publications by authors named "N Bhamarapravati"

Objective: The safety and immunogenicity of tetravalent live-attenuated dengue vaccines after a three dose vaccination series were evaluated in Thai children.

Method: One hundred three healthy flavivirus-seronegative schoolchildren ages 5 to 12 years were randomized to receive either dengue vaccine containing 3, 2, 1 and 2 log10 of the 50% cell culture infective dose, respectively, of the live-attenuated dengue vaccine serotypes 1, 2, 3 and 4 per dose (F3212; n = 40) or 3, 3, 1 and 3 log10 of the 50% cell culture infective dose (F3313; n = 42) or purified Vero cell rabies vaccine (control group; n = 21) given in a two dose schedule (3 to 5 months apart). A third dose was administered 8 to 12 months after the second dose to 90 subjects.

View Article and Find Full Text PDF

Attenuation markers of the candidate dengue 2 (D2) PDK-53 vaccine virus are encoded by mutations that reside outside of the structural gene region of the genome. We engineered nine dengue virus chimeras containing the premembrane (prM) and envelope (E) genes of wild-type D1 16007, D3 16562, or D4 1036 virus within the genetic backgrounds of wild-type D2 16681 virus and the two genetic variants (PDK53-E and PDK53-V) of the D2 PDK-53 vaccine virus. Expression of the heterologous prM-E genes in the genetic backgrounds of the two D2 PDK-53 variants, but not that of wild-type D2 16681 virus, resulted in chimeric viruses that retained PDK-53 characteristic phenotypic markers of attenuation, including small plaque size and temperature sensitivity in LLC-MK(2) cells, limited replication in C6/36 cells, and lack of neurovirulence in newborn ICR mice.

View Article and Find Full Text PDF

Chimeric dengue type 2/type 1 (DEN2/1) viruses, which contain the structural genes of the dengue-1 (16007) parental virus and the nonstructural genes of the DEN2-PDK53 virus, have been constructed. These DEN2/1 viruses induce high levels of DEN1 virus-specific neutralizing antibodies in mice. In this study, the DEN2/1 viruses induced DEN1 virus-specific neutralizing antibodies without the development of viremia in cynomolgus monkeys.

View Article and Find Full Text PDF

Dengue fever, caused by four serotypes of a mosquito-borne virus, is a growing problem in tropical countries. Currently, there is no treatment or vaccine. We evaluated safety and immunogenicity of two doses, given six months apart, of seven formulations of dengue tetravalent live-attenuated vaccine (containing different concentrations of the component viruses) versus placebo in 59 flavivirus-seronegative Thai adults.

View Article and Find Full Text PDF

The proliferative T cell responses to dengue vaccines were studied using the parental strains of dengue vaccines as antigens in 26 dengue immune individuals who resided in Bangkok which is the endemic area of dengue infection. The magnitude of the T cell responses in subjects with flavivirus cross-reactive neutralizing antibody was much higher and the cross-reactivity was broader than in those with dengue serotype-specific neutralizing antibodies, Japanese encephalitis (JE) specific antibodies or dengue cross-reactive antibodies. The T cell response in those with neutralizing antibody against a single serotype or in those who had dengue cross-reactive neutralizing antibody was relatively low, independent of the level or degree of cross-reactivity of the antibody.

View Article and Find Full Text PDF