Increasing efforts have been made to elucidate how genetic and environmental factors interact in Parkinson's disease (PD). In the present study, we assessed the development of symptoms on a genetic PD rat model that overexpresses human α-synuclein (Snca) at a presymptomatic age, exposed to a pro-inflammatory insult by intraperitoneal injection of lipopolysaccharide (LPS), using immunohistology, high-dimensional flow cytometry, constant potential amperometry, and behavioral analyses. A single injection of LPS into WT and Snca rats triggered long-lasting increase in the activation of pro-inflammatory microglial markers, monocytes, and T lymphocytes.
View Article and Find Full Text PDFSafinamide (SAF) is currently used to treat Parkinson's disease (PD) symptoms based on its theoretical ability to potentiate the dopamine (DA) signal, blocking monoamine oxidase (MAO) B. The present work aims to highlight the functional relevance of SAF as an enhancer of the DA signal, by evaluating its ability to prolong recovery from DA-mediated firing inhibition of DAergic neurons of the substantia nigra pars compacta (SNpc), compared to another MAO antagonist, tranylcypromine (TCP). Using multielectrode array (MEA) and single electrode extracellular recordings of spontaneous spikes from presumed SNpc DAergic cells in vitro, we show that SAF (30 μM) mildly prolongs the DA-mediated firing inhibition, as opposed to the profound effect of TCP (10 μM).
View Article and Find Full Text PDFBackground: The accumulation of α-synuclein (α-syn) fibrils in intraneuronal inclusions called Lewy bodies and Lewy neurites is a pathological signature of Parkinson's disease (PD). Although several aspects linked to α-syn-dependent pathology (concerning its spreading, aggregation, and activation of inflammatory and neurodegenerative processes) have been under intense investigation, less attention has been devoted to the real impact of α-syn overexpression on structural and functional properties of substantia nigra pars compacta (SNpc) dopamine (DA) neurons, particularly at tardive stages of α-syn buildup, despite this has obvious relevance to comprehending mechanisms beyond PD progression.
Objectives: We aimed to determine the consequences of a prolonged α-syn overexpression on somatodendritic morphology and functions of SNpc DA neurons.
Int J Mol Sci
September 2022
Parkinson's disease (PD) is a neurodegenerative disease characterized by the accumulation of alpha-synuclein, encoded by the gene. The main neuropathological hallmark of PD is the degeneration of dopaminergic neurons leading to striatal dopamine depletion. Trophic support by a neurotrophin called glial-derived neurotrophic factor (GDNF) is also lacking in PD.
View Article and Find Full Text PDFThe degeneration of nigral dopaminergic neurons is considered the hallmark of Parkinson's disease (PD), and it is triggered by different factors, including mitochondrial dysfunction, Lewy body accumulation, neuroinflammation, excitotoxicity and metal accumulation. Despite the extensive literature devoted to unravelling the signalling pathways involved in neuronal degeneration, little is known about the functional impairments occurring in these cells during illness progression. Of course, it is not possible to obtain direct information on the properties of the dopaminergic cells in patients.
View Article and Find Full Text PDF