J Phys Condens Matter
October 2013
We performed magnetic and ferroelectric measurements, associated with Landau theory and symmetry analysis, in order to clarify the situation of the YMnO3 system, a classical example of type I multiferroics. We found that the only magnetic group compatible with all experimental data (neutron scattering, magnetization, polarization, dielectric constant, second harmonic generation) is the P6'(3) group. In this group a small ferromagnetic component along c is induced by the Dzyaloshinskii-Moriya interaction, and observed here in magnetization measurements.
View Article and Find Full Text PDFWe observe a seemingly complex magnetic field dependence of the dielectric constant of hexagonal YbMnO(3) near the spin ordering temperature. After rescaling, the data taken at different temperatures and magnetic fields collapse on a single curve describing the sharp anomaly in nonlinear magnetoelectric response at the magnetic transition. We show that this anomaly is a result of the competition between two magnetic phases.
View Article and Find Full Text PDFThe slight incommensurate modulation of the structure of Bi(2)Mn(4/3)Ni(2/3)O(6) is sufficient to suppress the electrical polarization which arises in commensurate treatments of the structure, due to antiferroelectric coupling of local polar units of over 900 A(3). The incommensurate structure is produced by the competition between ferroelectric Bi lone pair-driven A site displacement, chemical order of Mn and Ni on the B site, and both charge and orbital order at these transition metals. The interplay between the frustrated polar Bi displacements and the frustrated spin order at the B site, induced by positional disorder, produces magnetodielectric coupling between the incommensurately modulated lattice and the spin-glass-like ground state with an unusual relationship between the magnetocapacitance and the applied field.
View Article and Find Full Text PDFThe search for multifunctional materials as multiferroics to be applied in microelectronic or for new, chemically stable and nontoxic, thermoelectric materials to recover waste heat is showing a common interest in the oxides whose structures contain a triangular network of transition-metal cations. To illustrate this point, two ternary systems, Ba-Co-O and Ca-Co-O, have been chosen. It is shown that new phases with a complex triangular structure can be discovered, for instance, by introduction of Ga (3+) into the Ba-Co-O system to stabilize Ba 6Ga 2Co 11O 26 and Ba 2GaCo 8O 14, which both belong to a large family of compounds with formula [Ba(Co,Ga)O 3-delta] n [BaCo 8O 11].
View Article and Find Full Text PDFThe magnetic, structural and electronic properties of Bi(0.75)Ca(0.25)MnO(3) have been investigated in comparison with those of Bi(0.
View Article and Find Full Text PDF