Objectives: Ultrasmall particles of iron oxide (USPIO) possess superparamagnetic properties and are used as negative contrast agent in magnetic resonance imaging (MRI) because of their strong T(2) and T(2)* effects. Besides this method, electron paramagnetic resonance (EPR) offers the unique capability to quantify these particles. The objective of this study was to evaluate a molecular marker for non invasive diagnosis and monitoring of inflammation.
View Article and Find Full Text PDFThis article reports the development and evaluation of two nano-emulsions (F45T-03/HFB and F15T-03/PFOB) containing fluorinated trityl radicals dissolved in perfluorocarbons. Preparation with a high-pressure homogenizer conferred sub-micronic size to both nano-emulsions. In vitro and in vivo EPR spectroscopy showed that the nano-emulsions had much greater oxygen sensitivity than the hydrophilic trityl, CT-03.
View Article and Find Full Text PDFTissue oxygenation is a crucial parameter in various physiopathological situations and can influence the therapeutic response of tumours. EPR oximetry is a reliable method for assessing and monitoring oxygen levels in vivo over long periods of time. Among the different paramagnetic oxygen sensors available for EPR oximetry, lithium phthalocyanine (LiPc) is a serious candidate for in vivo applications because of its narrow linewidth and its high signal-to-noise ratio.
View Article and Find Full Text PDFThe aim of the present study was to evaluate the usefulness of electron paramagnetic resonance (EPR) spectroscopy and imaging in assessing the phagocytic activity of the liver after administration of India ink. We conducted experiments on livers from control rodents and from rodents in which the Kupffer cell population had been depleted by pretreatment with gadolinium chloride. The EPR signal intensity recorded in liver homogenates was about two times lower in GdCl(3) treated rats than in control rats.
View Article and Find Full Text PDFNuclear magnetic resonance spectroscopy of fluorine-19 ((19)F NMR) has proven useful for evaluating kinetics of fluorinated chemotherapy drugs in tumors in vivo. This work investigated how three perfusion-enhancing vascular modifiers (BQ123, thalidomide, and Botulinum neurotoxin type A [BoNT-A]) would affect the chemotherapeutic efficacy of gemcitabine, a fluorinated drug widely used in human cancer treatment. Murine tumor growth experiments demonstrated that only BoNT-A showed a strong trend to enhance tumor growth inhibition by gemcitabine (1.
View Article and Find Full Text PDF