The phytotoxin fusicoccin (FC) was found to induce an increase in apoplastic H₂O₂ content in Arabidopsis thaliana cells, apparently linked to the presence of an as yet unidentified catalase inhibitor detectable even in the external medium of FC-treated cells. This study, aimed to further characterize the inhibitor's features, shows that (1) FC-induced H₂O₂ accumulation increases as a function of FC concentration and correlates to the amount of inhibitor released at apoplastic level. The pattern of H+ efflux, conversely, does not fit with that of these two parameters, suggesting that neither the production nor the release of the catalase inhibitor is linked to the main role of FC in activating the plasma membrane (PM) H+-ATPase; (2) treatment with 10 µM erythrosine B (EB) early and totally inhibits net H+ and K+ fluxes across the PM, indicative of the H+ pump activity; nevertheless, also in these conditions a huge FC-induced H₂O₂ accumulation occurs, confirming that this effect is not related to the FC-induced PM H+-ATPase activation; (3) the inhibitor's release increases with time in all conditions tested and is markedly affected by extracellular pH (a higher pH value being associated to a larger efflux), in agreement with a weak acid release; and (4) the inhibitor can be almost completely recovered in a CH₂C₂-soluble fraction extracted from the incubation medium by sequential acid-base partitioning which contains nearly all of the organic acids released.
View Article and Find Full Text PDFIn Arabidopsis thaliana cells, fusicoccin (FC) treatment induced an early and marked increase in the extracellular H(2)O(2) level. It also increased the huge hypo-osmotic stress-induced oxidative wave and, in addition, prevented the H(2)O(2) peak drop. These effects were apparently not linked to changes in either cytoplasmic pH or cytoplasmic free calcium concentration, since they occurred independently of the activity state of the plasma membrane (PM) H(+)-ATPase and neither influx nor efflux of (45)Ca(2+) was modified by FC.
View Article and Find Full Text PDFIn Arabidopsis thaliana cells, hypoosmotic treatment initially stimulates Ca2+ influx and inhibits its efflux and, concurrently, promotes a large H2O2 accumulation in the external medium, representative of reactive oxygen species (ROS) production. After the first 10-15 min, Ca2+ influx rate is, however, lowered, and a large rise in Ca2+ efflux, concomitant with a rapid decline in H2O2 level, takes place. The drop of the H2O2 peak, as well as the efflux of Ca2+, are prevented by treatment with submicromolar concentrations of eosin yellow (EY), selectively inhibiting the Ca2+-ATPase of the plasma membrane (PM).
View Article and Find Full Text PDFTreatment of Arabidopsis thaliana cells with oligogalacturonides (OG) initiates a transient production of reactive oxygen species (ROS), the concentration of which in the medium peaks after about 20 min of treatment. The analysis of OG effects on Ca (2+) fluxes shows that OG influence both Ca (2+) influx and Ca (2+) efflux (measured as (45)Ca (2+) fluxes) in a complex way. During the first 10 - 15 min, OG stimulate Ca (2+) influx and decrease its efflux, while at successive times of treatment, OG cause an increase of Ca (2+) efflux and a slight decrease of its influx.
View Article and Find Full Text PDFThe effects of ABA, isobutyric acid (IBA) and nicotine on K+ and Cl- efflux were studied in Arabidopsis thaliana seedlings, and the role of pHcyt and Em in the regulation of the efflux of these ions was discussed. The data show that treatments with IBA and nicotine influenced in opposite directions the efflux of either K+ or Cl-: K+ efflux was increased by nicotine and reduced in the presence of IBA, whereas Cl- efflux was stimulated by IBA and decreased by nicotine treatment. Under all the conditions tested ABA induced cytoplasmic acidification and inhibition of K+ and Cl- net efflux.
View Article and Find Full Text PDF