In the terrestrial isopod Armadillidium vulgare, many females produce progenies with female-biased sex ratios due to two feminizing sex ratio distorters (SRD): Wolbachia endosymbionts and a nuclear non-mendelian locus called the f element. To investigate the potential impact of these SRD on the evolution of host sex determination, we analyzed their temporal distribution in six A. vulgare populations sampled between 2003 and 2017, for a total of 29 time points.
View Article and Find Full Text PDFLand managers must find a compromise between rapidly changing landscapes and biodiversity conservation through ecological networks. Estimating ecological networks is a key approach to enhance or maintain functional connectivity by identifying the nodes and links of a graph, which represent habitats and their corresponding functional corridors, respectively. To understand the current state of biodiversity, it is necessary to consider dynamic landscape connectivity while relying on relevant land cover maps.
View Article and Find Full Text PDFThe land cover data presented here is a reconstruction of the past landscape (1993) at Very High Resolution (VHR) for the city of Poitiers, France. This reconstruction is based on multiple sources of images and data. We combined the strengths of both mono-temporal and multi-temporal classifications.
View Article and Find Full Text PDFIn the isopod , many females produce progenies with female-biased sex ratios, owing to two feminizing sex ratio distorters (SRD): endosymbionts and the element. We investigated the distribution and population dynamics of these SRD and mitochondrial DNA variation in 16 populations from Europe and Japan. Confirming and extending results from the 1990s, we found that the SRD are present at variable frequencies in populations and that the element is overall more frequent than .
View Article and Find Full Text PDF