Publications by authors named "N Bandmann"

The complex and integrated nature of both genetic and protein level factors influencing recombinant protein production in Escherichia coli makes it difficult to predict the optimal expression strategy for a given protein. Here, two combinatorial library strategies were evaluated for their capability of tuning recombinant protein production in the cytoplasm of E. coli.

View Article and Find Full Text PDF

Aqueous two-phase systems allow for the unequal distribution of proteins and other molecules in water-rich solutions containing phase separating polymers or surfactants. One approach to improve the partitioning properties of recombinant proteins is to produce the proteins as fused to certain peptide tags. However, the rational design of such tags has proven difficult since it involves a compromise between multivariate parameters such as partitioning properties, solvent accessibility and production/secretion efficiency.

View Article and Find Full Text PDF

Genetic engineering has been used for fusion of peptides, with different length and composition, on a protein to study the effect on partitioning in an aqueous two-phase system. The system was composed of dextran and the thermoseparating ethylene oxide-propylene oxide random copolymer, EO30P070. Peptides containing tryptophan, proline, arginine or aspartate residues were fused at the C-terminus of the recombinant protein ZZ-cutinase.

View Article and Find Full Text PDF

The Fusarium solani pisi lipase cutinase has been genetically engineered to investigate the influence of C-terminal peptide extensions on the partitioning of the enzyme in PEG-salt based aqueous two-phase bioseparation systems. Seven different cutinase lipase variants were constructed containing various C-terminal peptide extensions including tryptophan rich peptide tags ((WP)(2) and (WP)(4)), positively ((RP)(4)) and negatively ((DP)(4)) charged tags as well as combined tags with tryptophan together with either positively ((WPR)(4)) or negatively ((WPD)(4)) charged amino acids. The modified cutinase variants were stably produced in Escherichia coli as secreted to the periplasm from which they were efficiently purified by IgG-affinity chromatography employing an introduced N-terminal IgG-binding ZZ affinity fusion partner present in all variants.

View Article and Find Full Text PDF