Anthraquinones (AQs) are very effective chemotherapeutic agent, however their fundamental shortcoming is high cardiotoxicity caused by reactive oxygen species (ROS). Therefore, development of improved antitumor drugs with enhanced efficacy but reduced side effects remains a high priority. In the present study we evaluated the cytotoxicity and ROS generation activity of chelate complex of redox-active anthraquinone 2-phenyl-4-(butylamino)naphtho[2,3-h]quinoline-7,12-dione (Q1) with iron and copper ions.
View Article and Find Full Text PDFThe process of stone formation in the human body remains incompletely understood, which requires clinical and laboratory studies and the formulation of a new endogenous, nanotechnological concept of the mechanism of origin and formation of crystallization centers. Previously, the mechanism of sialolithiasis was considered a congenital disease associated with the pathology of the ducts in the structure of the glands themselves. To date, such morphological changes of congenital nature can be considered from the position of the intrauterine formation of endogenous bacterial infections complicated by the migration of antigenic structures initiating the formation of crystallization centers.
View Article and Find Full Text PDFElectron transfer plays a crucial role in living systems, including the generation of reactive oxygen species (ROS). Oxygen acts as the terminal electron acceptor in the respiratory chains of aerobic organisms as well as in some photoinduced processes followed by the formation of ROS. This is why the participation of exogenous antioxidants in electron transfer processes in living systems is of particular interest.
View Article and Find Full Text PDFGlycyrrhizinic acid (GA) is one of the active substances in licorice root. It exhibits antiviral activity against various enveloped viruses, for example, SARS-CoV-2. GA derivatives are promising biologically active compounds from perspective of developing broad-spectrum antiviral agents.
View Article and Find Full Text PDFBackground: Protease S (PrtS) from Photorhabdus laumondii belongs to the group of protealysin-like proteases (PLPs), which are understudied factors thought to play a role in the interaction of bacteria with other organisms. Since P. laumondii is an insect pathogen and a nematode symbiont, the analysis of the biological functions of PLPs using the PrtS model provides novel data on diverse types of interactions between bacteria and hosts.
View Article and Find Full Text PDF