The parasitic flatworm, trematoda Dicrocoelium lanceatum or lancet fluke is the causative agent of a widespread parasite disease of grazing ruminants, dicrocoeliosis. The aim of this work is the study of the presence and localization of neuropeptide FMRFamide immunoreactive elements in the nervous system of D. lanceatum using immunocytochemical technique and confocal scanning laser microscopy.
View Article and Find Full Text PDFThe trematode Dicrocoelium lanceatum known as lancet fluke, is a causative agent of dicrocoeliosis, a widespread parasitic disease of the grazing ruminants. The investigation of the major neurotransmitters and their functions are an important step in the development of a new pharmacological strategy of the struggle against the dicrocoeliosis affecting the neuronal signal substances and the functions of its nervous system. The aim of this work was to study the presence and localization of the neurotransmitter serotonin (5-HT, 5-Hydroxytryptamine) in the nervous system of D.
View Article and Find Full Text PDFWe report about the muscular system and the serotonergic and FMRFamidergic components of the nervous system of the Bucephalidae trematode, Rhipidocotyle campanula, an intestinal parasite of the pike. We use immunocytochemical methods and confocal scanning laser microscopy (CLSM). The musculature is identified by histochemical staining with fluorescently labeled phalloidin.
View Article and Find Full Text PDFBackground: Trematoda Opisthorchis felineus Rivolta, 1884 is the causative agent of dangerous parasite disease-opisthorchiasis, widespread in the Russian Federation. The details of the neuroanatomical localization of the serotoninergic and FMRFamidergic neurotransmitter elements as well as their functional roles remain not studied enough in both adult and larval forms of O. felineus.
View Article and Find Full Text PDFThe localisation and distribution of the serotoninergic nerve elements was studied for the first time in the flatworm Chimaericola leptogaster (Leuckart, 1830) using immunocytochemical methodology and confocal laser scanning microscopy. The musculature was investigated by histochemical staining of actin filaments; scanning electron microscopy was used to identify the sensory structures on the worm's surface. Uniciliated, bi-ciliated and multiciliated sensory endings have been described on the worm's surface.
View Article and Find Full Text PDF