Unlabelled: Fires in coniferous forests throughout the northern United States alter ecosystem processes and ecological communities, including the diversity and composition of microbial communities living in the soil. In addition to its influence on ecosystem processes and functions, the soil microbiome can interact with soilborne pathogens to facilitate or suppress plant disease development. Altering the microbiome composition to promote taxa that inhibit pathogenic activity has been suggested as a management strategy for forest diseases, including Armillaria root disease caused by , which causes growth loss and mortality of conifers.
View Article and Find Full Text PDFBrown root rot disease (BRRD) is a highly destructive tree disease. Early diagnosis of BRRD has been challenging because the first symptoms and signs are often observed after extensive tissue colonization. Existing molecular detection methods, all based on the internal transcribed spacer (ITS) region, were developed without testing against global isolates, other wood-decay fungi, or host plant tissues.
View Article and Find Full Text PDFis a fungus (Basidiomycota, Agaricomycetes, Agaricales, and Physalacriaceae) that is generally considered as a weak/opportunistic pathogen or saprophyte on many tree hosts. It widely occurs across the northwestern USA to southern British Columbia, Canada, but relatively little is known about its ecological role in the diverse forest ecosystems where it occurs. This review summarizes the biology and ecology of .
View Article and Find Full Text PDFHyperglycemia, or elevated blood glucose, renders individuals more prone to developing severe Staphylococcus aureus infections. S. aureus is the most common etiological agent of musculoskeletal infection, which is a common manifestation of disease in hyperglycemic patients.
View Article and Find Full Text PDF