Publications by authors named "N B Griko"

Malignant melanoma with brain metastasis has a high mortality rate. New approaches for diagnosis and treatment are urgently required to improve prognosis. Here we present a 60-year-old male with metastatic melanoma to the brain.

View Article and Find Full Text PDF

Recent strides in immunotherapy have illuminated the crucial role of CTLA-4 and PD-1/PD-L1 pathways in contemporary oncology, presenting both promises and challenges in response rates and adverse effects. This study employs a computational biology tool (in silico approach) to craft aptamers capable of binding to dual receptors, namely, inhibitory CTLA4 and NKG2A, thereby unleashing both T and NK cells and enhancing CD8 T and NK cell functions for tumor cell lysis. Computational analysis highlighted AYA22T-R2-13 with HADDOCK scores of -78.

View Article and Find Full Text PDF

Autoimmune diseases (AD) consist of a spectrum of disease entities whose etiologies are very complex and still not well understood. Every individual has the potential for developing AD under appropriate conditions because the body contains lymphocytes that are potentially reactive with self-antigens. The aims of this study are to (1) explore the flow cytometry method to identify the frequency of various circulating CD4 T helper (Th) cell-subsets, including Th1, Th2, Th9, Th17, Th17.

View Article and Find Full Text PDF

Thrombin is a key enzyme involved in blood clotting, and its dysregulation can lead to thrombotic diseases such as stroke, myocardial infarction, and deep vein thrombosis. Thrombin aptamers have the potential to be used as therapeutic agents to prevent or treat thrombotic diseases. Thrombin DNA aptamers developed in our laboratory exhibit high affinity and specificity to thrombin.

View Article and Find Full Text PDF

Background: The paucity of SARS-CoV-2-specific virulence factors has greatly hampered the therapeutic management of patients with COVID-19 disease. Although available vaccines and approved therapies have shown tremendous benefits, the continuous emergence of new variants of SARS-CoV-2 and side effects of existing treatments continue to challenge therapy, necessitating the development of a novel effective therapy. We have previously shown that our developed novel single-stranded DNA aptamers not only target the trimer S protein of SARS-CoV-2, but also block the interaction between ACE2 receptors and trimer S protein of Wuhan origin, Delta, Delta plus, Alpha, Lambda, Mu, and Omicron variants of SARS-CoV-2.

View Article and Find Full Text PDF