Publications by authors named "N Atkinson"

Pyrenoids are the key component of one of the most abundant biological CO concentration mechanisms found in nature. Pyrenoid-based CO-concentrating mechanisms (pCCMs) are estimated to account for one third of global photosynthetic CO capture. Our molecular understanding of how pyrenoids work is based largely on work in the green algae Chlamydomonas reinhardtii.

View Article and Find Full Text PDF

Approximately one-third of global CO assimilation is performed by the pyrenoid, a liquid-like organelle found in most algae and some plants. Specialized pyrenoid-traversing membranes are hypothesized to drive CO assimilation in the pyrenoid by delivering concentrated CO, but how these membranes are made to traverse the pyrenoid matrix remains unknown. Here we show that proteins SAGA1 and MITH1 cause membranes to traverse the pyrenoid matrix in the model alga Chlamydomonas reinhardtii.

View Article and Find Full Text PDF

Sulphate (SO), predominantly derived from sulphur (S)-bearing glacial sediments distributed widely across the Canadian Interior Plains, contributes to high groundwater salinity and can be detrimental to riparian and dry-land ecosystems, agricultural production, and water use. While previous researchers investigated SO distribution and dynamics in shallow groundwater at local scales (<1500 km), we examine SO occurrence in groundwater at larger scales, and to depths of ∼150 m, considering variations in geology, glacial history, climate, and geochemical and hydrogeological settings in the Canadian province of Alberta. Sulphate concentrations in groundwater vary considerably, with 15 % of 139,130 samples above the 500 mg/L Canadian drinking water aesthetic objective.

View Article and Find Full Text PDF
Article Synopsis
  • In some algae, there's a special part called the pyrenoid that helps capture CO2 better using a protein called Rubisco.
  • Researchers studied the protein BST4, which is found in the pyrenoid tubules, to see how it works with Rubisco.
  • They discovered that BST4 isn’t just holding things together but is more like a gate for ions, helping the algae grow better when light changes.
View Article and Find Full Text PDF