Publications by authors named "N Asikin-Mijan"

This study focuses on the sustainable production of bio-jet fuel through the catalytic hydrodeoxygenation (HDO) of isoeugenol (IE). Sucrose-based activated carbon supported bimetallic Platinum-Tin metal sulphides (PtO-SnS/AC) catalyst was prepared for HDO process. Physicochemical properties of catalysts with different spraying synthesis methods (in situ and ex situ metal doping) and Pt loading (0.

View Article and Find Full Text PDF

Chitosan/zeolite-X (CHS/ZX) was synthesized to serve as an effective adsorbent for metal porphyrins through adsorption processes as an alternative to traditional separation methods from crude oil. The adsorption-desorption mechanisms of vanadyl and nickel tetraphenyl porphyrin (VO-TPP and Ni-TPP) were conducted on the model solution. Compared to individual components CHS and ZX, the CHS/ZX composite exhibited a doubled capacity for metal porphyrin removal.

View Article and Find Full Text PDF

Saponin is a plant-derived chemical with an amphiphilic glycoconjugate structure extracted from sapindaceae plants like . This study investigated saponin extract of as a natural template for formation of mesoporous zeolite Y. Surface area and mesoporosity of zeolite Y were improved with optimization of extract (SRE) concentration (Y-Ln; = 2, 5, 10 or 15 mL), reaching 216.

View Article and Find Full Text PDF

Conversion of red mud (RM) that contains a high level of silica, alumina and iron minerals into heterogenous catalysts, offers a route for the utilization of abundant toxic by-products of bauxite refining. In this study, the conversion of red mud into mesoporous Fe-aluminosilicate produced selective catalysts for the deoxygenation of waste cooking oil to green diesel hydrocarbons. Direct conversion of red mud in the presence cetyltrimethylammonium bromide into Fe-aluminosilicate (RM-CTA) produced a highly mesoporous structure with oligomeric FeO clusters within the pores.

View Article and Find Full Text PDF

Although metallic nanocatalysts such as palladium nanoparticles (Pd NPs) are known to possess higher catalytic activity due to their large surface-to-volume ratio, however, in nanosize greatly reducing their activity due to aggregation. To overcome this challenge, superparamagnetic chitosan-coated manganese ferrite was successfully prepared and used as a support for the immobilization of palladium nanoparticles to overcome the above-mentioned challenge. The Pd-Chit@MnFeO catalyst exhibited high catalytic activity in 4-nitrophenol and 4-nitroaniline reductions, with respective turnover frequencies of 357.

View Article and Find Full Text PDF