Increasing evidence shows that heat shock proteins (hsp) escape the cytosol gaining access to the extracellular environment, acting as signaling agents. Since the majority of these proteins lack the information necessary for their export via the classical secretory pathway, attention has been focused on alternative releasing mechanisms. Crossing the plasma membrane is a major obstacle to the secretion of a cytosolic protein into the extracellular milieu.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a major contemporary and escalating malady in which amyloid-β (Aβ) peptides are the most likely causative agent. Aβ peptides spontaneously tend to aggregate in extracellular fluids following a progression from a monomeric state, through intermediate forms, ending in amyloid fibers and plaques. It is generally accepted now that the neurotoxic agents leading to cellular death, memory loss, and other AD characteristics are the Aβ intermediate aggregated states.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive neurodegenerative disorder leading to dementia caused by advanced neuronal dysfunction and death. The most significant symptoms of AD are observed at late stages of the disease when interventions are most likely too late to ameliorate the condition. Currently, the predominant theory for AD is the "amyloid hypothesis," which states that abnormally increased levels of amyloid β (Aβ) peptides result in the production of a variety of aggregates that are neurotoxic.
View Article and Find Full Text PDFCell Stress Chaperones
July 2016
The cellular response to stress is orchestrated by the expression of a family of proteins termed heat shock proteins (hsp) that are involved in the stabilization of basic cellular processes to preserve cell viability and homeostasis. The bulk of hsp function occurs within the cytosol and subcellular compartments. However, some hsp have also been found outside cells released by an active mechanism independent of cell death.
View Article and Find Full Text PDFCell Stress Chaperones
March 2015
Interaction of the Alzheimer's Aβ peptides with the plasma membrane of cells in culture results in chronic increases in cytosolic [Ca(2+)]. Such increases can cause a variety of secondary effects leading to impaired cell growth or cell degeneration. In this investigation, we made a comprehensive study of the changes in cytosolic [Ca(2+)] in single PC12 cells and human neurons stressed by continuous exposure to a medium containing Aβ42 for several days.
View Article and Find Full Text PDF