Greenhouse vegetable production is often associated with the excessive use of nitrogen fertilizers and a high rate of nitrate accumulation. We evaluated the uptake, translocation, and accumulation of nitrate in chard and spinach under greenhouse conditions with optimal fertilization. The results revealed low levels of nitrate in the leachates and substrates (chard ˃ spinach).
View Article and Find Full Text PDFContamination of water bodies with heavy metals poses a significant threat to human health and the environment, requiring the development of effective treatment techniques. In this context, aluminosilicates emerge as promising sorbents due to their cost-effectiveness and natural abundance. This review provides a clear, in-depth, and comprehensive description of the structure, properties, and characteristics of aluminosilicates, supporting their application as adsorbents and highlighting their diversity and adaptability to different matrices and analytes.
View Article and Find Full Text PDFThe progressive influx of engineered nanoparticles (ENPs) into the soil matrix catalyses a fundamental transformation in the equilibrium dynamics between the soil and the edaphic solution. This all-encompassing investigation is geared towards unravelling the implications of an array of ENP types, diverse dosages and varying incubation durations on the kinetics governing Cd sorption within Ultisol soils. These soils have been subjected to detailed characterizations probing their textural and physicochemical attributes in conjunction with an exhaustive exploration of ENP composition, structure and morphology.
View Article and Find Full Text PDFIn this work, a numerical method is proposed to predict the electrokinetic phenomena and combined with an experimental study of the surface charge density () and zeta potential ( behavior is investigated for borosilicate immersed in KCl and NaCl electrolytes, and for imogolite immersed in KCl, CaCl, and MgCl electrolytes. Simulations and experiments of the electrokinetic flows with electrolyte solutions were performed to accurately determine the electric double layer (EDL), , and at various electrolyte concentrations and pH. The zeta potential was experimentally determined and numerically predicted by solving the coupled governing equations of mass, species, momentum, and electrical field iteratively.
View Article and Find Full Text PDFIn recent years, the release of metal and metallic oxide engineered nanoparticles (ENPs) into the environment has generated an increase in their accumulation in agricultural soils, which is a serious risk to the ecosystem and soil health. Here, we show the impact of ENPs on the physical and chemical properties of soils. A literature search was performed in the Scopus database using the keywords ENPs, plus soil physical properties or soil chemical properties, and elements availability.
View Article and Find Full Text PDF