Nervous system disorders are characterized by a progressive loss of function and structure of neurons that ultimately leads to a decline in cognitive and motor functions. In this study, we used interfacial polyelectrolyte complexation (IPC) to produce fibers for neural tissue regeneration. IPC is a processing method that allows spinning of sensitive biopolymers.
View Article and Find Full Text PDFAims: The development and selection of T cells occur within the thymus. This organ involutes throughout life, compromising the generation of T cells and, consequently, the efficacy of the immune system. Mesenchymal stem cells (MSC) have beneficial effects on the immune system.
View Article and Find Full Text PDFACS Appl Electron Mater
December 2024
Electronics based on natural or degradable materials are a key requirement for next-generation devices, where sustainability, biodegradability, and resource efficiency are essential. In this context, optimizing the molecular chemical structure of organic semiconductor compounds (OSCs) used as active layers is crucial for enhancing the efficiency of these devices, making them competitive with conventional electronics. In this work, honey-gated organic field-effect transistors (HGOFETs) were fabricated using four different perylene derivative films as OSCs, and the impact of the chemical structure of these perylene derivatives on the performance of HGOFETs was investigated.
View Article and Find Full Text PDFThree-dimensional (3D) models with improved biomimicry are essential to reduce animal experimentation and drive innovation in tissue engineering. In this study, we investigate the use of alginate-based materials as polymeric inks for 3D bioprinting of osteogenic models using human bone marrow stem/stromal cells (hBMSCs). A composite bioink incorporating alginate, nano-hydroxyapatite (nHA), type I collagen (Col) and hBMSCs was developed and for extrusion-based printing.
View Article and Find Full Text PDFBackground & Aims: Mood disorders and disorders of gut-brain interaction (DGBI) are highly prevalent, commonly comorbid, and lack fully effective therapies. Although selective serotonin reuptake inhibitors (SSRIs) are first-line pharmacological treatments for these disorders, they may impart adverse effects, including anxiety, anhedonia, dysmotility, and, in children exposed in utero, an increased risk of cognitive, mood, and gastrointestinal disorders. SSRIs act systemically to block the serotonin reuptake transporter and enhance serotonergic signaling in the brain, intestinal epithelium, and enteric neurons.
View Article and Find Full Text PDF