Purpose: Severe coronavirus disease 2019 (COVID-19) is linked to insufficient control of viral replication and excessive inflammation driven by an unbalanced immune response. Plasmacytoid dendritic cells (pDCs) are specialized in the rapid production of interferons in response to viral infections, and can also prime and activate T-cells. Conventional DCs (cDCs) are critical for the elimination of viral infections owing to their specialized ability to prime and activate T cells.
View Article and Find Full Text PDFInterventional radiology techniques provide excellent local tumor control for small tumors in various organs, but several limitations can hamper the oncological outcomes such as the tumor size or the number of lesions. Technical improvements, optimal patient selection and combination with systemic therapies, including immune checkpoint inhibitors, have been successfully developed to overcome these barriers.In this setting, chemotherapy and targeted therapies aim to diminish the tumor burden in addition to local treatments, while immunotherapies may have a synergistic effect in terms of mechanism of action on the tumor cell as well as the immune environment, with multiple treatment combinations being available.
View Article and Find Full Text PDFBackground: Imagining ways to prevent or treat glioblastoma (GBM) has been hindered by a lack of understanding of its pathogenesis. Although overexpression of platelet derived growth factor with two A-chains (PDGF-AA) may be an early event, critical details of the core biology of GBM are lacking. For example, existing PDGF-driven models replicate its microscopic appearance, but not its genomic architecture.
View Article and Find Full Text PDFThe presence of IgG antibodies in the pretransplant cross-match (XM) test results in hyperacute rejection, but IgM antibodies are inconsequential. The XM should be able to differentiate between IgG and IgM antibodies. This study evaluated 3 methods.
View Article and Find Full Text PDF