Integrating connectivity theory within watershed modelling is one solution to overcome spatial and temporal shortcomings of sediment transport prediction, and Part I and II of these companion papers advance this overall goal. In Part I of these companion papers, we present the theoretical development of probability of connectivity formula considering connectivity's magnitude, extent, timing and continuity that can be applied to watershed modelling. Model inputs include a high resolution digital elevation model, hydrologic watershed variability, and field connectivity assessments.
View Article and Find Full Text PDFIntegrating connectivity theory within watershed modelling is one solution to overcome spatial and temporal shortcomings of sediment transport prediction, and Part I and II of these companion papers advance this overall goal. In Part II of these companion papers, we investigate sediment flux via connectivity formula discretized over many catchments and then integrated via sediment routing; and we advance model evaluation technology by using hysteresis of sensor data. Model evaluation with hysteresis indices provides nearly a 100% increase in model statistics.
View Article and Find Full Text PDF