Background: Haemophilus influenzae is prevalent within the airways of persons with cystic fibrosis (pwCF). H. influenzae is often associated with pulmonary exacerbations (PEx) in pediatric cohorts, but in adults, studies have yielded conflicting reports around the impact(s) on clinical outcomes such as lung function decline.
View Article and Find Full Text PDFSuper-resolution microscopy has revolutionized our ability to visualize structures below the diffraction limit of conventional optical microscopy and is particularly useful for investigating complex biological targets like chromatin. Chromatin exhibits a hierarchical organization with structural compartments and domains at different length scales, from nanometers to micrometers. Single molecule localization microscopy (SMLM) methods, such as STORM, are essential for studying chromatin at the supra-nucleosome level due to their ability to target epigenetic marks that determine chromatin organization.
View Article and Find Full Text PDFChromatin-sensitive Partial Wave Spectroscopic (csPWS) microscopy offers a non-invasive glimpse into the mass density distribution of cellular structures at the nanoscale, leveraging the spectroscopic information. Such capability allows us to analyze the chromatin structure and organization and the global transcriptional state of the cell nuclei for the study of its role in carcinogenesis. Accurate segmentation of the nuclei in csPWS microscopy images is an essential step in isolating them for further analysis.
View Article and Find Full Text PDFCancer and bacterial infections rank among the most significant global health threats. accounting for roughly 25 million fatalities each year. This statistic underscores the urgent necessity for developing novel drugs, enhancing current treatments, and implementing systems that boost their bioavailability to achieve superior therapeutic outcomes.
View Article and Find Full Text PDFDiscovery of meningeal lymphatic vessels (LVs) in the dura mater, also known as dural LVs (dLVs) that depend on vascular endothelial growth factor C expression, has raised interest in their possible involvement in Alzheimer's disease (AD). Here we find that in the APdE9 and 5xFAD mouse models of AD, dural amyloid-β (Aβ) is confined to blood vessels and dLV morphology or function is not altered. The induction of sustained dLV atrophy or hyperplasia in the AD mice by blocking or overexpressing vascular endothelial growth factor C, impaired or improved, respectively, macromolecular cerebrospinal fluid (CSF) drainage to cervical lymph nodes.
View Article and Find Full Text PDF