For over 10 years, the Cassini spacecraft has patrolled Saturn's magnetosphere and observed its magnetopause boundary over a wide range of prevailing solar wind and interior plasma conditions. We now have data that enable us to resolve a significant dawn-dusk asymmetry and find that the magnetosphere extends farther from the planet on the dawnside of the planet by 7 ± 1%. In addition, an opposing dawn-dusk asymmetry in the suprathermal plasma pressure adjacent to the magnetopause has been observed.
View Article and Find Full Text PDFJ Geophys Res Space Phys
September 2015
Saturn's magnetic field acts as an obstacle to solar wind flow, deflecting plasma around the planet and forming a cavity known as the magnetosphere. The magnetopause defines the boundary between the planetary and solar dominated regimes, and so is strongly influenced by the variable nature of pressure sources both outside and within. Following from Pilkington et al.
View Article and Find Full Text PDFThe discovery of water vapour and ice particles erupting from Saturn's moon Enceladus fuelled speculation that an internal ocean was the source. Alternatively, the source might be ice warmed, melted or crushed by tectonic motions. Sodium chloride (that is, salt) is expected to be present in a long-lived ocean in contact with a rocky core.
View Article and Find Full Text PDFThe majority of planetary aurorae are produced by electrical currents flowing between the ionosphere and the magnetosphere which accelerate energetic charged particles that hit the upper atmosphere. At Saturn, these processes collisionally excite hydrogen, causing ultraviolet emission, and ionize the hydrogen, leading to H(3)(+) infrared emission. Although the morphology of these aurorae is affected by changes in the solar wind, the source of the currents which produce them is a matter of debate.
View Article and Find Full Text PDF