Int J Dev Neurosci
October 2024
Autism spectrum disorder (ASD) is a set of neurobehavioral manifestations that impose poor social interaction and stereotyped repetitive patterns. Several mircoRNA (miRNA) dysregulations underpin ASD pathophysiology via impairing the neurogenic niches. For instance, miR-146a and miR-106 differential expressions are linked to deregulation of ASD-related genes and the severity of clinical symptoms, respectively.
View Article and Find Full Text PDFADHD has huge knowledge gaps concerning its etiology. MicroRNAs (miRNAs) provide promising diagnostic biomarkers of human pathophysiology and may be a novel therapeutic option. The aim was to investigate the levels of miR-34c-3p, miR-155, miR-138-1, miR-296-5p, and plasma brain-derived neurotrophic factor (BDNF) in a group of children with ADHD compared to neurotypicals and to explore correlations between these measures and some clinical data.
View Article and Find Full Text PDFThis paper examines the role of dietary peptides gluten and casein in modulating brain function in individuals with autism spectrum disorder (ASD) from a biochemical perspective. Neurotransmitter systems and neural networks are crucial for brain function, and alterations at the biochemical level can contribute to the characteristic symptoms and behaviors of ASD. The paper explores how dietary peptides influence neurotransmitter systems and neural networks, highlighting their potential as interventions to improve brain function in ASD.
View Article and Find Full Text PDFThis article explores the potential link between endocrine-disrupting chemicals (EDCs), neuroinflammation, and the development of autism spectrum disorder (ASD). Neuroinflammation refers to the immune system's response to injury, infection, or disease in the central nervous system. Studies have shown that exposure to EDCs, such as bisphenol A and phthalates, can disrupt normal immune function in the brain, leading to chronic or excessive neuroinflammation.
View Article and Find Full Text PDFBackground: The molecular mechanisms regulating coronavirus pathogenesis are complex, including virus-host interactions associated with replication and innate immune control. However, some genetic and epigenetic conditions associated with comorbidities increase the risk of hospitalization and can prove fatal in infected patients. This systematic review will provide insight into host genetic and epigenetic factors that interfere with COVID-19 expression in light of available evidence.
View Article and Find Full Text PDF