Publications by authors named "N A Sitnikova"

Novel nanomaterials used for wound healing should have many beneficial properties, including high biological and antibacterial activity. Immobilization of proteins can stimulate cell migration and viability, and implanted Ag ions provide an antimicrobial effect. However, the ion implantation method, often used to introduce a bactericidal element into the surface, can lead to the degradation of vital proteins.

View Article and Find Full Text PDF

Diabetic foot ulcers (DFU) are a common complication of Type 2 Diabetes Mellitus (T2DM). Development of bioactive wound healing covers is an important task in medicine. The use of autologous platelet-rich plasma (PRP) consisting of growth factors, cytokines and components of extracellular matrix is a perspective approach for DFU treatment, but we previously found that some T2DM PRP samples have a toxic effect on mesenchymal stem cells (MSCs) in vitro.

View Article and Find Full Text PDF

Platelet-rich Plasma (PRP) is an ensemble of growth factors, extracellular matrix components, and proteoglycans that are naturally balanced in the human body. In this study, the immobilization and release of PRP component nanofiber surfaces modified by plasma treatment in a gas discharge have been investigated for the first time. The plasma-treated polycaprolactone (PCL) nanofibers were utilized as substrates for the immobilization of PRP, and the amount of PRP immobilized was assessed by fitting a specific X-ray Photoelectron Spectroscopy (XPS) curve to the elemental composition changes.

View Article and Find Full Text PDF

This study focused on the synthesis and characterization of pure curdlan-chitosan foams (CUR/CS), as well as foams containing Ag nanoparticles (CUR/CS/Ag), and their effect on the skin repair of diabetic mice (II type). The layer of antibacterial superabsorbent foam provides good oxygenation, prevents bacterial infection, and absorbs exudate, forming a soft gel (moist environment). These foams were prepared from a mixture of hydrolyzed curdlan and chitosan by lyophilization.

View Article and Find Full Text PDF

The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.

View Article and Find Full Text PDF