Publications by authors named "N A Safronov"

The peculiarities of the optical properties of 2-aryl-1,2,3-triazole acids and their sodium salts were investigated in different solvents (1,4-dioxane, dimethyl sulfoxide DMSO, methanol MeOH) and in mixtures with water. The results were discussed in terms of the molecular structure formed by inter- and intramolecular noncovalent interactions (NCIs) and their ability to ionize in anions. Theoretical calculations using the Time-Dependent Density Functional Theory (TDDFT) were carried out in different solvents to support the results.

View Article and Find Full Text PDF

New fluorescent dyes containing an assembled 1,4-dihydroazolo[5,1-][1,2,4]triazine (DAT) core and an isoxazole ring were synthesized through a reaction between diazopyrazole or diazoimidazoles and isoxazolyl-derived enamines in mild conditions. The photophysical characteristics (maxima absorption and emission, Stokes shifts, fluorescent quantum yields, and fluorescence lifetimes) of the new fluorophores were obtained. The prepared DATs demonstrated emission maxima ranging within 433-487 nm, quantum yields within 6.

View Article and Find Full Text PDF

A series of fluorescent sensors based on small molecule were designed and fully characterised, demonstrating AIEE effect and revealing an outstanding ability to selectively detect Hg ions. The structural and electronic properties were studied through quantum chemical calculations at (Time-Dependent) Density Functional Theory ((TD)-DFT) level. Carboxamides of 2-Aryl-1,2,3-Triazoles (CATs) showed significant differences in their photophysical properties depending on the structure of the substituent at amino function on the C5-atom in the heterocycle.

View Article and Find Full Text PDF

Secondary metabolites of bacteria are regulatory molecules that act as "info-chemicals" that control some metabolic processes in the cells of microorganisms. These molecules provide the function of bacteria communication in microbial communities. As primary producers of organic matter in the biosphere, microalgae play a central ecological role in various ecosystems.

View Article and Find Full Text PDF

Thermal activation of transient receptor potential (TRP) cation channels is one of the most striking examples of temperature-controlled processes in cell biology. As the evidence indicating the fundamental role of such processes in thermosensation builds at a fast pace, adequately accurate tools that would allow heat receptor logic behind thermosensation to be examined on a single-cell level are in great demand. Here, we demonstrate a specifically designed fiber-optic probe that enables thermal activation with simultaneous online thermometry of individual cells expressing genetically encoded TRP channels.

View Article and Find Full Text PDF