Publications by authors named "N A Ryzhkov"

Cyanobacteria play a crucial role in global carbon and nitrogen cycles through photosynthesis, making them valuable subjects for understanding the factors influencing their light utilization efficiency. Photosynthetic microorganisms offer a promising avenue for sustainable energy conversion in the field of photovoltaics. It was demonstrated before that application of an external electric field to the microbial biofilm or cell improves electron transfer kinetics and, consequently, efficiency of power generation.

View Article and Find Full Text PDF

We present the change of light absorption of cyanobacteria in response to externally applied electrical polarization. Specifically, we studied the relation between electrical polarization and changes in light absorbance for a biophotoelectrode assembly comprising boron-doped diamond as semiconducting electrode and live PCC 8005 trichomes embedded in either polysaccharide (agar) or conductive conjugated polymer (PEDOT-PSS) matrices. Our study involves the monitoring of cyanobacterial absorbance and the measurement of photocurrents at varying wavelengths of illumination for switched electric fields, i.

View Article and Find Full Text PDF

Nowadays, information processing is based on semiconductor (e.g., silicon) devices.

View Article and Find Full Text PDF

We report here the effect of the photoelectrochemical photocurrent switching (PEPS) observed on highly-ordered pristine anodized Ti/TiO for the first time. At negative potential bias, blue irradiation gives cathodic photocurrent, whereas anodic photocurrent was observed for ultraviolet irradiation. We believe this phenomenon is due to the electron pathway provided by Ti defect states.

View Article and Find Full Text PDF

Adjustment of the environmental acidity is a powerful method for fine-tuning the outcome of many chemical processes. Numerous strategies have been developed for the modification of pH in bulk as well as locally. Electrochemical and photochemical processes provide a powerful approach for on-demand generation of ion concentration gradients locally at solid-liquid interfaces.

View Article and Find Full Text PDF