Aging of the immune system involves functional changes in individual cell populations, in hematopoietic tissues and at the systemic level. They are mediated by factors produced by circulating cells, niche cells, and at the systemic level. Age-related alterations in the microenvironment of the bone marrow and thymus cause a decrease in the production of naive immune cells and functional immunodeficiencies.
View Article and Find Full Text PDFAccording to the World Health Organization, the population of over 60 will double in the next 30 years in the developed countries, which will enforce a further raise of the retirement age and increase the burden on the healthcare system. Therefore, there is an acute issue of maintaining health and prolonging active working longevity, as well as implementation of early monitoring and prevention of premature aging and age-related disorders to avoid early disability. Traditional indicators of biological age are not always informative and often require extensive and expensive analysis.
View Article and Find Full Text PDFThe goal of this study was to uncover the influence of professional activity, migration, and gender on dynamics of subjective age and ageing biomarkers. We examined the representatives of investigative types of professions (ITP), 30-75 years old in Russia, (101/62 women), and Russian migrants to the European Union, (101/56 women). ITPs appeared to be ageing slower than statistical standards; men age faster than women; the pre-retirement group (51-65 years old) showed acceleration of relative biological ageing in the Russian sample (women +4.
View Article and Find Full Text PDFHaematopoiesis in adult animals is maintained by haematopoietic stem cells (HSCs), which self-renew and can give rise to all blood cell lineages. The AGM region is an important intra-embryonic site of HSC development and a wealth of evidence indicates that HSCs emerge from the endothelium of the embryonic dorsal aorta and extra-embryonic large arteries. This, however, is a stepwise process that occurs through sequential upregulation of CD41 and CD45 followed by emergence of fully functional definitive HSCs.
View Article and Find Full Text PDFNucleosome depletion at transcription start sites (TSS) has been documented genome-wide in multiple eukaryotic organisms. However, the mechanisms that mediate this nucleosome depletion and its functional impact on transcription remain largely unknown. We have studied these issues at human MHC class II (MHCII) genes.
View Article and Find Full Text PDF